login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers that are congruent to {0, 2, 3, 5, 7, 8, 10} mod 12. The ivory keys on a piano, start with A0 = the 0th key.
20

%I #36 Sep 08 2022 08:45:03

%S 0,2,3,5,7,8,10,12,14,15,17,19,20,22,24,26,27,29,31,32,34,36,38,39,41,

%T 43,44,46,48,50,51,53,55,56,58,60,62,63,65,67,68,70,72,74,75,77,79,80,

%U 82,84,86,87,89,91,92,94,96,98,99,101,103,104,106,108,110,111,113,115

%N Numbers that are congruent to {0, 2, 3, 5, 7, 8, 10} mod 12. The ivory keys on a piano, start with A0 = the 0th key.

%C More precisely, the key-numbers of the pitches of a minor scale on a standard chromatic keyboard, with root = 0 and flat seventh.

%C Also key-numbers of the pitches of an Aeolian mode scale on a standard chromatic keyboard, with root = 0. An Aeolian mode scale can, for example, be played on consecutive white keys of a standard keyboard, starting on the root tone A.

%C A piano sequence since if a(n) < 88 then A059620(a(n)) = 0.

%H Vincenzo Librandi, <a href="/A060107/b060107.txt">Table of n, a(n) for n = 1..2000</a>

%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,1,-1).

%F a(n) = a(n-7) + 12 for n > 7.

%F a(n) = a(n-1) + a(n-7) - a(n-8) for n > 8.

%F G.f.: x^2*(2 + x + 2*x^2 + 2*x^3 + x^4 + 2*x^5 + 2*x^6)/((x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x - 1)^2). - _R. J. Mathar_, Oct 08 2011

%F From _Wesley Ivan Hurt_, Jul 20 2016: (Start)

%F a(n) = (84*n - 91 - 2*(n mod 7) + 5*((n + 1) mod 7) - 2*((n + 2) mod 7) - 2*((n + 3) mod 7) + 5*((n + 4) mod 7) - 2*((n + 5) mod 7) - 2*((n + 6) mod 7))/49.

%F a(7k) = 12k - 2, a(7k-1) = 12k - 4, a(7k-2) = 12k - 5, a(7k-3) = 12k - 7, a(7k-4) = 12k - 9, a(7k-5) = 12k - 10, a(7k-6) = 12k - 12. (End)

%F a(n) = A081031(n) - 1 for 1 <= n <= 36. - _Jianing Song_, Oct 14 2019

%p A060107:=n->12*floor(n/7)+[0, 2, 3, 5, 7, 8, 10][(n mod 7)+1]: seq(A060107(n), n=0..100); # _Wesley Ivan Hurt_, Jul 20 2016

%t Select[Range[0,120], MemberQ[{0,2,3,5,7,8,10}, Mod[#,12]]&] (* or *) LinearRecurrence[{1,0,0,0,0,0,1,-1}, {0,2,3,5,7,8,10,12}, 70] (* _Harvey P. Dale_, Nov 10 2011 *)

%o (Magma) [n : n in [0..150] | n mod 12 in [0, 2, 3, 5, 7, 8, 10]]; // _Wesley Ivan Hurt_, Jul 20 2016

%o (PARI) x='x+O('x^99); concat(0, Vec(x^2*(2+x+2*x^2+2*x^3+x^4+2*x^5+2*x^6)/((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2))) \\ _Jianing Song_, Sep 22 2018

%Y Cf. A059620, A081031. Complement of A060106.

%Y A guide for some sequences related to modes and chords:

%Y Modes:

%Y Lydian mode (F): A083089

%Y Ionian mode (C): A083026

%Y Mixolydian mode (G): A083120

%Y Dorian mode (D): A083033

%Y Aeolian mode (A): this sequence (raised seventh: A083028)

%Y Phrygian mode (E): A083034

%Y Locrian mode (B): A082977

%Y Chords:

%Y Major chord: A083030

%Y Minor chord: A083031

%Y Dominant seventh chord: A083032

%K easy,nonn

%O 1,2

%A _Henry Bottomley_, Feb 27 2001