login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136617
a(n) = largest k such that the sum of k consecutive reciprocals 1/n + ... + 1/(n+k-1) does not exceed 1.
6
1, 2, 4, 6, 7, 9, 11, 12, 14, 16, 18, 19, 21, 23, 24, 26, 28, 30, 31, 33, 35, 36, 38, 40, 42, 43, 45, 47, 48, 50, 52, 54, 55, 57, 59, 61, 62, 64, 66, 67, 69, 71, 73, 74, 76, 78, 79, 81, 83, 85, 86, 88, 90, 91, 93, 95, 97, 98, 100, 102, 103, 105, 107, 109, 110, 112, 114, 115
OFFSET
1,2
COMMENTS
Heuristic formula from David Cantrell (SeqFan mailing list, January 2008). Think of a ruler with harmonic numbers H(n) as marks. Then A136617(n) gives the number of marks m-n+1 = A136616(n)-n+1:
.............H........H.....H........***.....H.......
..............n-1......n.....n+1..............m......
...........----o-------+------+-----.***.-----+-o----
................\______________..______________/......
...............................\/.....................
............................Length 1..................
The first 23 terms of A083088 are identical to those of A136617 but the limits of A083088(n)/n and A136617(n)/n for n->oo are different.
LINKS
E. R. Bobo, A sequence related to the harmonic series, College Math. J. 26 (1995), 308-310.
FORMULA
a(n) = A136616(n-1) - n + 1 with David Cantrell's heuristics: a(n) = floor( (e - 1)*(n - 1/2) + (e - 1/e)/(24*(n - 1/2)) ).
EXAMPLE
a(3) = 4 because 1/3+1/4+1/5+1/6 < 1 has 4 summands; adding 1/7 exceeds 1.
MAPLE
A136617 := proc(n) local t, m; t:= 0; for m from n do t:= t+1/m; if t > 1 then return m-n; fi; od; end proc; [seq(A136617(n), n=1..100)]; # Robert Israel, January 2008
MATHEMATICA
Table[Module[{start = Floor[z (E - 1)] - 1},
NestWhile[# + 1 &, start, HarmonicNumber[# + z] - HarmonicNumber[z] + 1/z <= 1 &]], {z, 1, 100}] (* Peter J. C. Moses, Aug 20 2012 *)
KEYWORD
easy,nonn
AUTHOR
Rainer Rosenthal, Jan 13 2008
STATUS
approved