login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083087
Square table read by antidiagonals which forms a permutation of the natural numbers: T(n,0) = floor(n*x/(x-1))+1, T(n,k+1) = ceiling(x*T(n,k)), for n>=0, k>=0, where x = 1 + sqrt(2).
8
1, 3, 2, 8, 5, 4, 20, 13, 10, 6, 49, 32, 25, 15, 7, 119, 78, 61, 37, 17, 9, 288, 189, 148, 90, 42, 22, 11, 696, 457, 358, 218, 102, 54, 27, 12, 1681, 1104, 865, 527, 247, 131, 66, 29, 14, 4059, 2666, 2089, 1273, 597, 317, 160, 71, 34, 16, 9800, 6437, 5044, 3074
OFFSET
0,2
COMMENTS
The array in A083087 is the dispersion of the sequence given floor(n+1+n*sqrt(2)). The Mathematica program at A191438 generates A083087 using f[n_]:=Floor[n*x+n+1] instead of f[n_]:=Floor[n*x+n]. - Clark Kimberling, Jun 04 2011
FORMULA
T(n,k+1) = 2*T(n,k) + T(n,k-1) + 1 for n>=0, k>=1.
EXAMPLE
Table begins:
1 3 8 20 49 119 288 ...
2 5 13 32 78 189 457 ...
4 10 25 61 148 358 865 ...
6 15 37 90 218 527 1273 ...
7 17 42 102 247 597 1442 ...
9 22 54 131 317 766 1850 ...
11 27 66 160 387 935 2258 ...
12 29 71 172 416 1005 2427 ...
14 34 83 201 486 1174 2835 ...
16 39 95 230 556 1343 3243 ...
18 44 107 259 626 1512 3651 ...
19 46 112 271 655 1582 3820 ...
21 51 124 300 725 1751 4228 ...
23 56 136 329 795 1920 4636 ...
24 58 141 341 824 1990 4805 ...
MATHEMATICA
(See Comments.)
PROG
(Magma) z:=10; x:=1+Sqrt(2); S:=[]; for n in [0..z] do for k in [0..n] do if n-k eq 0 then Append(~S, Floor(n*x/(x-1))+1); else Append(~S, Ceiling(x*S[k+1+(n*(n-1) div 2)])); end if; end for; end for; S; // Klaus Brockhaus, Jan 04 2011
CROSSREFS
Cf. A083088 (first column), A048739 (first row), A083090 (diagonal), A083091 (antidiagonal sums), A083044, A083047, A083050.
Sequence in context: A053219 A173030 A271589 * A191724 A191433 A191437
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Apr 21 2003
STATUS
approved