login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173030
Expansion of q^(-1/6) * (eta(q)^4 + 7 * eta(q^7)^4) in powers of q.
1
1, 3, 2, 8, -5, -4, -10, 8, -19, 0, 14, -16, -10, -4, 0, 6, 14, 20, 2, 0, -11, 20, 24, -16, 0, -4, 14, 8, -9, -15, 26, 0, 2, -28, 0, -16, -12, -28, -22, 0, 14, 16, 0, -30, 0, -28, 26, 32, -17, 0, 24, -16, -22, 0, -10, 32, -34, 55, 14, 0, 45, -4, 38, 8, 0, 0, -34, -8, 38, 0, -22, 42, 2, -28, 0, 0, -10, 20, -48, -40, -20, 44
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of f(-x)^4 + 7 * x * f(-x^7)^4 = chi(-x) * chi(-x^7) * (psi(x)^4 + 7 * x^3 * psi(x^7)^4) in powers of x where psi(), chi(), f() are Ramanujan theta functions.
Expansion of (phi(-x)^4 + 7 * phi(-x^7)^4) / (8 * chi(-x) * chi(-x^7)) in powers of x^2 where phi(), chi(), f() are Ramanujan theta functions.
a(n) = b(6*n + 1) where b(n) is multiplicative and b(2^e) = b(3^e) = 0^e, b(p^e) = (-p)^(e/2) (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f. is a period 1 Fourier series which satisfies f(-1 / (252 t)) = 252 (t/i)^2 * f(t) where q = exp(2 Pi i t).
A000727(n) = a(n) if n != 1 (mod 7). A000727(7*n + 1) + 7 * A000727(n) = a(7*n + 1).
EXAMPLE
G.f. = 1 + 3*x + 2*x^2 + 8*x^3 - 5*x^4 - 4*x^5 - 10*x^6 + 8*x^7 - 19*x^8 + ...
G.f. = q + 3*q^7 + 2*q^13 + 8*q^19 - 5*q^25 - 4*q^31 - 10*q^37 + 8*q^43 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x]^4 + 7 x QPochhammer[ x^7]^4, {x, 0, n}]; (* Michael Somos, Sep 02 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x + A)^4 + 7 * x * eta(x^7 + A)^4, n))};
CROSSREFS
Cf. A000727.
Sequence in context: A097018 A127541 A053219 * A271589 A083087 A191724
KEYWORD
sign
AUTHOR
Michael Somos, Feb 07 2010
STATUS
approved