login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A173031
Sequence whose G.f is given by: 1/(1-z)/(1-2*z)^2/(1-z-z^2).
0
1, 6, 24, 79, 232, 632, 1633, 4058, 9788, 23063, 53332, 121452, 273089, 607534, 1339376, 2929951, 6366480, 13752880, 29556545, 63232370, 134731956, 286044711, 605326044, 1277246724, 2687879137, 5642847462, 11820387528, 24710992303
OFFSET
0,2
FORMULA
a(n+5) = 6*a(n+4)-12*a(n+3)+7*a(n+2)+4*a(n+1)-4*a(n).
a(n) = (38/5*5^(1/2)+17)*((1+sqrt(5))/2)^n+(-38/5*5^(1/2)+17)*((1-sqrt(5))/2)^n-32*2^n-1+16*2^(n-1)*n.
a(n) = F(n+8)+2^(n+3)*(n-4)-1, where (F(n)) is the Fibonacci sequence for which F(0)=F(1)=1, F(2)=2, ... (related to A000045).
MAPLE
c(0):=1:c(1):=6:c(2):=24:c(3):=79:c(4):=232:for n from 0 to 30 do : c(n+5):=6*c(n+4)-12*c(n+3)+7*c(n+2)+4*c(n+1)-4*c(n): od :seq(c(n), n=0..30); taylor((-1/(-1+z)/(-1+2*z)^2/(1-z-z^2)), z=0, 30); for n from 0 to 30 do a(n):=simplify((38/5*5^(1/2)+17)*((1+sqrt(5))/2)^n+(-38/5*5^(1/2)+17)*((1-sqrt(5))/2)^n-32*2^n-1+16*2^(n-1)*n):od:seq(a(n), n=0..30);
CROSSREFS
Sequence in context: A140088 A359133 A011855 * A350413 A361474 A004404
KEYWORD
easy,nonn
AUTHOR
Richard Choulet, Feb 07 2010
STATUS
approved