OFFSET
1,1
COMMENTS
The subsequence of prime partial sums of naughty primes begins: 10007, 200029, 550049, 6650131. The subsubsequence of naughty prime partial sums of naughty primes begins: 10007, and then what? The smallest square in the sequence is 60025 = 5^2 * 7^4.
FORMULA
a(n) = SUM[i=1..n] {p such that p is prime and the number of zeros in the decimal representation of p is greater than the number of all other digits}.
EXAMPLE
a(24) = 10007 + 10009 + 40009 + 70001 + 70003 + 70009 + 90001 + 90007 + 100003 + 200003 + 200009 + 300007 + 400009 + 500009 + 700001 + 900001 + 900007 + 1000003 + 1000033 + 1000037 + 1000039 + 1000081 + 1000099 + 1000303.
MATHEMATICA
Accumulate[Select[Prime[Range[100000]], DigitCount[#, 10, 0]> IntegerLength[ #]/2&]] (* Harvey P. Dale, Jun 09 2015 *)
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Jonathan Vos Post, Feb 07 2010
EXTENSIONS
Corrected and extended by Harvey P. Dale, Jun 09 2015
STATUS
approved