login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291454
Number of half tones between successive pitches in a major scale.
3
2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1
OFFSET
1,1
COMMENTS
In music theory the repeating sequence '2,2,1,2,2,2,1' is the number of steps of half tones in pitch between the tones of a major scale. Starting at, for example, the tone 'C' that is the first tone of the C major scale, 2 half tones up leads to 'D', which is the second tone in the scale. The scale then is: C,D,E,F,G,A,B and C. Starting at another term in the sequence will produce a different scale; for example, '2,1,2,2,1,2,2' will produce a minor scale.
From Robert G. Wilson v, Aug 25 2017: (Start)
First forward difference of A083026.
Decimal expansion of 737407/3333333. (End)
LINKS
Wikipedia, Scale (music)
FORMULA
a(n) = floor(12*(n+1)/7) - floor(12*n/7). - Federico Provvedi, Oct 18 2018
Dirichlet g.f.: 2*zeta(s) - 7^(-s)*(zeta(s,3/7) + zeta(s)). - Federico Provvedi, Aug 27 2021
MAPLE
a:=proc(n) floor(12*(n+1)/7-floor(12*n/7)) end: seq(a(n), n=1..110); # Muniru A Asiru, Oct 19 2018
MATHEMATICA
Table[{2, 2, 1, 2, 2, 2, 1}, 15] // Flatten (* Robert G. Wilson v, Aug 25 2017 *)
Table[Floor[12/7 (k + 1)] - Floor[12/7 k], {k, 1, 100}] (* Federico Provvedi, Oct 18 2018 *)
PROG
(PARI) a(n)=[1, 2, 2, 1, 2, 2, 2][n%7+1] \\ Charles R Greathouse IV, Aug 26 2017
(Magma) [12*(n+1) div 7 - 12*n div 7: n in [1..80]]; // Vincenzo Librandi, Oct 21 2018
CROSSREFS
Sequence in context: A230259 A085030 A078377 * A105697 A340456 A080757
KEYWORD
nonn,easy,hear
AUTHOR
Halfdan Skjerning, Aug 24 2017
STATUS
approved