Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #72 Dec 06 2022 01:03:39
%S 2,2,1,2,2,2,1,2,2,1,2,2,2,1,2,2,1,2,2,2,1,2,2,1,2,2,2,1,2,2,1,2,2,2,
%T 1,2,2,1,2,2,2,1,2,2,1,2,2,2,1,2,2,1,2,2,2,1,2,2,1,2,2,2,1,2,2,1,2,2,
%U 2,1,2,2,1,2,2,2,1,2,2,1,2,2,2,1,2,2,1,2,2,2,1,2,2,1,2,2,2,1,2,2,1,2,2,2,1
%N Number of half tones between successive pitches in a major scale.
%C In music theory the repeating sequence '2,2,1,2,2,2,1' is the number of steps of half tones in pitch between the tones of a major scale. Starting at, for example, the tone 'C' that is the first tone of the C major scale, 2 half tones up leads to 'D', which is the second tone in the scale. The scale then is: C,D,E,F,G,A,B and C. Starting at another term in the sequence will produce a different scale; for example, '2,1,2,2,1,2,2' will produce a minor scale.
%C From _Robert G. Wilson v_, Aug 25 2017: (Start)
%C First forward difference of A083026.
%C Decimal expansion of 737407/3333333. (End)
%H Muniru A Asiru, <a href="/A291454/b291454.txt">Table of n, a(n) for n = 1..1000</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Scale_(music)">Scale (music)</a>
%F a(n) = floor(12*(n+1)/7) - floor(12*n/7). - _Federico Provvedi_, Oct 18 2018
%F Dirichlet g.f.: 2*zeta(s) - 7^(-s)*(zeta(s,3/7) + zeta(s)). - _Federico Provvedi_, Aug 27 2021
%p a:=proc(n) floor(12*(n+1)/7-floor(12*n/7)) end: seq(a(n),n=1..110); # _Muniru A Asiru_, Oct 19 2018
%t Table[{2, 2, 1, 2, 2, 2, 1}, 15] // Flatten (* _Robert G. Wilson v_, Aug 25 2017 *)
%t Table[Floor[12/7 (k + 1)] - Floor[12/7 k], {k, 1, 100}] (* _Federico Provvedi_,Oct 18 2018 *)
%o (PARI) a(n)=[1,2,2,1,2,2,2][n%7+1] \\ _Charles R Greathouse IV_, Aug 26 2017
%o (Magma) [12*(n+1) div 7 - 12*n div 7: n in [1..80]]; // _Vincenzo Librandi_, Oct 21 2018
%Y Cf. A083026, A286748.
%K nonn,easy,hear
%O 1,1
%A _Halfdan Skjerning_, Aug 24 2017