OFFSET
1,2
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..65537
FORMULA
Dirichlet g.f.: zeta(s)/zeta(2s)*2^s/(2^s-1). - Ralf Stephan, Jun 17 2007
Sum_{k=1..n} a(k) ~ 12*n / Pi^2. - Vaclav Kotesovec, Feb 02 2019
Multiplicative with a(2^e) = 2, and for an odd prime p a(p^e) = 1 if e = 1 and 0 otherwise. - Amiram Eldar, Aug 27 2023
MATHEMATICA
f[p_, e_] := If[e == 1, 1, 0]; f[2, e_] := 2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Aug 27 2023 *)
PROG
(PARI) a(n)=if(n<1, 0, direuler(p=2, n, if(p%2==1, 1+X, if(p%2, 1, (1+X)/(1-X))))[n])
(PARI) A078461(n) = (issquarefree(n/2^valuation(n, 2))*(2-(n%2))); \\ Antti Karttunen, Sep 27 2018
CROSSREFS
KEYWORD
mult,nonn,easy
AUTHOR
Benoit Cloitre, Dec 31 2002
STATUS
approved