login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A335875
a(n) = min(A329697(n), A331410(n)).
8
0, 0, 1, 0, 1, 1, 1, 0, 2, 1, 2, 1, 2, 1, 2, 0, 1, 2, 3, 1, 2, 2, 2, 1, 2, 2, 3, 1, 3, 2, 1, 0, 3, 1, 3, 2, 3, 3, 3, 1, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 2, 2, 3, 3, 3, 1, 4, 3, 4, 2, 2, 1, 3, 0, 3, 3, 4, 1, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 1, 4, 2, 3, 2, 2, 3, 4, 2, 3, 3, 3, 2, 2, 2, 4, 1, 2, 2, 4, 2, 3, 2, 3, 2, 4
OFFSET
1,9
LINKS
FORMULA
a(n) = min(A329697(n), A331410(n)).
For all n >= 1, A335904(n) >= A335884(n) >= A335881(n) >= a(n) >= A335885(n).
EXAMPLE
A329697(67) = A331410(67) = 4, thus a(67) = min(4,4) = 4.
A329697(15749) = 9 and A331410(15749) = 10, thus a(15749) = 9.
PROG
(PARI)
A329697(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A329697(f[k, 1]-1)))); };
A331410(n) = { my(f=factor(n)); sum(k=1, #f~, if(2==f[k, 1], 0, f[k, 2]*(1+A331410(f[k, 1]+1)))); };
A335875(n) = min(A329697(n), A331410(n));
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jun 29 2020
STATUS
approved