OFFSET
0,3
COMMENTS
The length of row n is given by phi(2*n + 1), with phi = A000010, for n >= 0.
The quadrupling sequence modulo N = 2*n + 1, for n >= 0, has entries QS(N, s(N,i), j) = s(N,i)*4^j (mod N), with j >= 0, and certain positive integer seeds s(N, i), for i = 1, 2, ..., S(N) = A339049((N-1)/2), where gcd(s(N, i), N) = 1 (restricted seeds modulo N). These quadrupling sequences are periodic with period length P(N) = A053447((N-1)/2) (order of 4 modulo N). Only the periods (cycles) QS(N, s(N,i)) = {QS(N, s(N, i), j)}_{j=0..P(N)-1}, for i = 1, 2, ..., S(N), are listed.
N = 1 (n = 0) is special: one takes here the restricted residue system modulo N not as [0] but as [1]. The order of 4 modulo 1 is 1, because 4^1 == 1 (mod 1) (== 0 (mod 1)).
In order to obtain the complete system of quadrupling sequences one starts with seed s(N, 1) = 1, and if all numbers from the smallest positive reduced residue system modulo N (called RRS(N), given in row N of A038566) are obtained, i.e., if P(N) = #RRS(N) = phi(N) = A000010(N), then the system is complete. Otherwise the smallest missing number from RRS(N) is taken as new seed s(N, 2), etc. until the system is complete. This means that the number of seeds needed is S(N) given above.
FORMULA
EXAMPLE
The irregular triangle begins (the vertical bar separates the cycles):
n, N \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 ...
0, 1: 1
1, 3: 1|2
2, 5: 1 4| 2 3
3, 7: 1 4 2| 3 5 6
4, 9: 1 4 7| 2 8 5
5, 11: 1 4 5 9 3| 2 8 10 7 6
6, 13: 1 4 3 12 9 10| 2 8 6 11 5 7
7, 15: 1 4| 2 8| 7 13|11 14
8, 17: 1 4 16 13| 2 8 15 9| 3 12 14 5| 6 7 11 10
9, 19: 1 4 16 7 9 17 11 6 5| 2 8 13 14 18 15 3 12 10
10, 21: 1 4 16| 2 8 11| 5 20 17|10 19 13
11, 23: 1 4 16 18 3 12 2 8 9 13 6| 2 8 9 13 6 1 4 16 18 3 12
12, 25: 1 4 16 14 6 24 21 9 11 19| 2 8 7 3 12 23 17 18 22 13
13, 27: 1 4 16 10 13 25 19 22 7| 2 8 5 20 26 23 11 17 14
...
n = 14, N = 29: 1 4 16 6 24 9 7 28 25 13 23 5 20 22 | 2 8 3 12 19 18 14 27 21 26 17 10 11 15,
n = 15, N = 31: 1 4 16 2 8 | 3 12 17 6 24 | 5 20 18 10 9 | 7 28 19 14 25 | 11 13 21 22 26 | 15 29 23 30 27.
...
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Wolfdieter Lang, Dec 13 2020
STATUS
approved