login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338654
T(n, k) = 2^n * Product_{j=1..k} (j/2)^((-1)^(j - 1)). Triangle read by rows, for 0 <= k <= n.
2
1, 2, 1, 4, 2, 2, 8, 4, 4, 6, 16, 8, 8, 12, 6, 32, 16, 16, 24, 12, 30, 64, 32, 32, 48, 24, 60, 20, 128, 64, 64, 96, 48, 120, 40, 140, 256, 128, 128, 192, 96, 240, 80, 280, 70, 512, 256, 256, 384, 192, 480, 160, 560, 140, 630, 1024, 512, 512, 768, 384, 960, 320, 1120, 280, 1260, 252
OFFSET
0,2
LINKS
EXAMPLE
Triangle start:
[0] 1
[1] 2, 1
[2] 4, 2, 2
[3] 8, 4, 4, 6
[4] 16, 8, 8, 12, 6
[5] 32, 16, 16, 24, 12, 30
[6] 64, 32, 32, 48, 24, 60, 20
[7] 128, 64, 64, 96, 48, 120, 40, 140
[8] 256, 128, 128, 192, 96, 240, 80, 280, 70
[9] 512, 256, 256, 384, 192, 480, 160, 560, 140, 630
MAPLE
T := (n, k) -> 2^n*mul((j/2)^((-1)^(j - 1)), j = 1 .. k):
seq(seq(T(n, k), k=0..n), n=0..9);
# Recurrence:
Trow := proc(n) if n = 0 then return [1] fi; Trow(n - 1);
n^irem(n, 2) * (4/n)^irem(n + 1, 2) * %[n]; [op(2 * %%), %] end:
seq(print(Trow(n)), n = 0..9);
PROG
(PARI) t(n, k) = 2^n * prod(j=1, k, ((j/2)^((-1)^(j - 1))))
trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))
/* Print upper 10 rows of the triangle as follows: */
trianglerows(10) \\ Felix Fröhlich, Apr 22 2021
CROSSREFS
T(n, 0) = A000079(n), T(n, n) = A056040(n), T(2*n, n) = A253665(n).
Cf. A328002 (row sums), A163590.
Sequence in context: A348676 A201703 A153281 * A130584 A339046 A265911
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Apr 22 2021
STATUS
approved