login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A328002
a(n) = 2^n * Sum_{k=0..n} Product_{j=1..k} (2/j)^((-1)^j).
1
1, 3, 8, 22, 50, 130, 280, 700, 1470, 3570, 7392, 17556, 36036, 84084, 171600, 394680, 802230, 1823250, 3695120, 8314020, 16812796, 37505468, 75716368, 167657672, 338019500, 743642900, 1497686400, 3276189000, 6592494600, 14348370600, 28851858720, 62512360560
OFFSET
0,2
FORMULA
a(n) = sqrt(2/Pi)*Sum_{k=0..n} s(k)*s(n-k-1/2) where s(n) = 2^n*(Gamma(n/2 + 1/2)/Gamma(n/2 + 1))^cos(n*Pi).
a(n) = [x^n] (4*x^2 - x - 1)/((1 - 4*x^2)^(3/2)*(2*x - 1)).
a(n) ~ 2^n * n^(3/2) / (3*sqrt(2*Pi)). - Vaclav Kotesovec, Oct 19 2019
D-finite with recurrence: n*a(n) +(n-4)*a(n-1) +2*(-4*n+3)*a(n-2) +4*(-n+2)*a(n-3) +16*(n-2)*a(n-4)=0. - R. J. Mathar, Jan 09 2020
D-finite with recurrence: a(n) = (4*n*(n*(n + 5) - 10)*a(n-2) + 2*(n - 6)*(n + 2)*a(n-1))/(n*(n*(n + 3) - 14)). - Peter Luschny, Jan 10 2020
Let q(n) = a(n+1)/a(n) and d(n) = numerator(q(n)) - 2*denominator(q(n)).
Conjecture: d(n) is periodic with period 12 and repetition pattern (1, 2, 3, 3, 3, 2, 1, 1, 3, 6, 3, 1). - Peter Luschny, Jan 10 2020
a(n) = Sum_{k=0..n} 2^(n-k)*A056040(k). - Peter Luschny, Apr 22 2021
MAPLE
s := z -> 2^z*(GAMMA(z/2+1/2)/GAMMA(z/2+1))^cos(z*Pi):
a := n -> sqrt(2/Pi)*add(s(k)*s(n-k-1/2), k=0..n): seq(a(n), n=0..19);
# Alternative:
a := proc(n) option remember; if n=0 then 1 elif n=1 then 3 else
(4*n*(n*(n+5)-10)*a(n-2) + 2*(n-6)*(n+2)*a(n-1))/(n*(n*(n+3)-14)) fi end:
seq(a(n), n=0..31); # Peter Luschny, Jan 10 2020
CROSSREFS
Cf. A056040, row sums of A338654.
Sequence in context: A363593 A178525 A266187 * A202192 A027211 A027235
KEYWORD
nonn
AUTHOR
Peter Luschny, Oct 02 2019
EXTENSIONS
Simpler name by Peter Luschny, Apr 22 2021
STATUS
approved