login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A327999
a(n) = Sum_{k=0..2n}(k!*(2n - k)!)/(floor(k/2)!*floor((2n - k)/2)!)^2.
2
1, 5, 28, 160, 896, 4864, 25600, 131072, 655360, 3211264, 15466496, 73400320, 343932928, 1593835520, 7314866176, 33285996544, 150323855360, 674309865472, 3006477107200, 13331578486784, 58823872086016, 258385232527360, 1130297953353728, 4925812092436480
OFFSET
0,2
FORMULA
a(n) = 4^n*(n^2 + n + 8)/8.
a(n) = [x^n] (-16*x^2 + 7*x - 1)/(4*x - 1)^3.
a(n) = n! [x^n] exp(4*x)*(2*x^2 + x + 1).
a(n) = a(n-1)*4*(8 + n + n^2)/(8 - n + n^2).
a(n) = A328000(2*n).
From Colin Barker, Feb 05 2020: (Start)
a(n) = 12*a(n-1) - 48*a(n-2) + 64*a(n-3) for n>2.
a(n) = 2^(2*n - 3)*(8 + n + n^2).
(End)
MATHEMATICA
LinearRecurrence[{12, -48, 64}, {1, 5, 28}, 24] (* Michael De Vlieger, Feb 07 2020 *)
PROG
(PARI) Vec((1 - 7*x + 16*x^2) / (1 - 4*x)^3 + O(x^25)) \\ Colin Barker, Feb 05 2020
(PARI) apply( {A327999(n)=(n^2+n+8)<<(2*n-3)}, [0..25]) \\ M. F. Hasler, Feb 07 2020
CROSSREFS
Even bisection of A328000.
Sequence in context: A027912 A378462 A243669 * A254538 A090040 A025174
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Oct 01 2019
STATUS
approved