login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n, k) = 2^n * Product_{j=1..k} (j/2)^((-1)^(j - 1)). Triangle read by rows, for 0 <= k <= n.
2

%I #20 Dec 10 2023 17:33:24

%S 1,2,1,4,2,2,8,4,4,6,16,8,8,12,6,32,16,16,24,12,30,64,32,32,48,24,60,

%T 20,128,64,64,96,48,120,40,140,256,128,128,192,96,240,80,280,70,512,

%U 256,256,384,192,480,160,560,140,630,1024,512,512,768,384,960,320,1120,280,1260,252

%N T(n, k) = 2^n * Product_{j=1..k} (j/2)^((-1)^(j - 1)). Triangle read by rows, for 0 <= k <= n.

%H Felix Fröhlich, <a href="/A338654/b338654.txt">Table of n, a(n) for n = 0..10000</a>

%e Triangle start:

%e [0] 1

%e [1] 2, 1

%e [2] 4, 2, 2

%e [3] 8, 4, 4, 6

%e [4] 16, 8, 8, 12, 6

%e [5] 32, 16, 16, 24, 12, 30

%e [6] 64, 32, 32, 48, 24, 60, 20

%e [7] 128, 64, 64, 96, 48, 120, 40, 140

%e [8] 256, 128, 128, 192, 96, 240, 80, 280, 70

%e [9] 512, 256, 256, 384, 192, 480, 160, 560, 140, 630

%p T := (n, k) -> 2^n*mul((j/2)^((-1)^(j - 1)), j = 1 .. k):

%p seq(seq(T(n, k), k=0..n), n=0..9);

%p # Recurrence:

%p Trow := proc(n) if n = 0 then return [1] fi; Trow(n - 1);

%p n^irem(n, 2) * (4/n)^irem(n + 1, 2) * %[n]; [op(2 * %%), %] end:

%p seq(print(Trow(n)), n = 0..9);

%o (PARI) t(n, k) = 2^n * prod(j=1, k, ((j/2)^((-1)^(j - 1))))

%o trianglerows(n) = for(x=0, n-1, for(y=0, x, print1(t(x, y), ", ")); print(""))

%o /* Print upper 10 rows of the triangle as follows: */

%o trianglerows(10) \\ _Felix Fröhlich_, Apr 22 2021

%Y T(n, 0) = A000079(n), T(n, n) = A056040(n), T(2*n, n) = A253665(n).

%Y Cf. A328002 (row sums), A163590.

%K nonn,tabl

%O 0,2

%A _Peter Luschny_, Apr 22 2021