login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A127472
Triangle T(n,k) = Sum_{j=k..n, j|n, k|j} phi(j) read by rows, 1<=k<=n.
1
1, 2, 1, 3, 0, 2, 4, 3, 0, 2, 5, 0, 0, 0, 4, 6, 3, 4, 0, 0, 2, 7, 0, 0, 0, 0, 0, 6, 8, 7, 0, 6, 0, 0, 0, 4, 9, 0, 8, 0, 0, 0, 0, 0, 6, 10, 5, 0, 0, 8, 0, 0, 0, 0, 4, 11, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 12, 9, 8, 6, 0, 6, 0, 0, 0, 0, 0, 4, 13
OFFSET
1,2
COMMENTS
Defined by the matrix product A054522 * A051731.
FORMULA
T(n,k) = Sum_{j=k..n} A054522(n,j) * A051731(j,k), 1<=k<=n.
EXAMPLE
First few rows of the triangle are;
.1;
.2, 1;
.3, 0, 2;
.4, 3, 0, 2;
.5, 0, 0, 0, 4;
.6, 3, 4, 0, 0, 2;
.7, 0, 0, 0, 0, 0, 6;
.8, 7, 0, 6, 0, 0, 0, 4;
....
MAPLE
A127472 := proc(n, k)
a := 0 ;
for j from k to n do
if (n mod j = 0 ) and (j mod k =0 ) then
a := a+numtheory[phi](j) ;
end if;
end do;
a ;
end proc:
seq(seq(A127472(n, k), k=1..n), n=1..14) ; # R. J. Mathar, Nov 11 2011
CROSSREFS
Cf. A054522, A051731, A062949 (row sums), A000010 (diagonal n=k), A127471 (swapped matrix product).
Sequence in context: A025642 A025643 A127478 * A194665 A004563 A329647
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jan 15 2007
STATUS
approved