login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A082953
a(n) = A000252(n) / A070732(n).
3
1, 2, 4, 8, 16, 8, 36, 32, 36, 32, 100, 32, 144, 72, 64, 128, 256, 72, 324, 128, 144, 200, 484, 128, 400, 288, 324, 288, 784, 128, 900, 512, 400, 512, 576, 288, 1296, 648, 576, 512, 1600, 288, 1764, 800, 576, 968, 2116
OFFSET
1,2
COMMENTS
From Jianing Song, Apr 20 2019: (Start)
a(n) is the number of split complex numbers z = x + yj in a reduced system modulo n where x, y are integers, j^2 = 1; number of solutions to gcd(x^2 - y^2, n)=1 with x, y in [0, n-1].
a(n) is the number of invertible elements in the ring Z_n[x]/(x^2 - 1) with discriminant d = 4, where Z_n is the ring of integers modulo n. (End)
LINKS
FORMULA
a(n) = phi(n)*phi(2*n) = A000010(n)*A062570(n). - Vladeta Jovovic, May 02 2005
Multiplicative with a(2^e) = 2^(2e-1) and a(p^e) = (p-1)^2*p^(2e-2) for p > 2. - R. J. Mathar, Apr 14 2011
a(n) = phi(n)^2 if n odd; 2*phi(n)^2 if n even, where phi(n) = A000010(n). - Jianing Song, Apr 20 2019
Sum_{k=1..n} a(k) ~ c * n^3, where c = (2/5) * Product_{p prime} (1 - (2*p-1)/p^3) = (2/5) * A065464 = 0.171299... . - Amiram Eldar, Oct 30 2022
MAPLE
A082953 := proc(n) numtheory[phi](n)*numtheory[phi](2*n) ; end proc:
seq(A082953(n), n=1..100) ; # R. J. Mathar, Jan 07 2011
MATHEMATICA
Array[Times @@ Map[EulerPhi, {#, 2 #}] &, 47] (* Michael De Vlieger, Apr 21 2019 *)
CROSSREFS
Similar sequences: A127473 (size of (Z_n[x]/(x^2 - x))*, d = 1), A002618 ((Z_n[x]/(x^2))*, d = 0), A079458 ((Z_n[x]/(x^2 + 1))*, d = -4), A319445 ((Z_n[x]/(x^2 - x + 1))* or (Z_n[x]/(x^2 + x + 1))*, d = -3).
Sequence in context: A053026 A375635 A119318 * A009289 A070335 A277846
KEYWORD
mult,nonn
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), May 26 2003
STATUS
approved