login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065480 Decimal expansion of Product_{p prime} (1 - 1/(p^2+p-1)). 4
6, 6, 9, 5, 8, 0, 2, 9, 0, 5, 3, 9, 0, 6, 2, 3, 6, 7, 6, 3, 5, 0, 2, 5, 6, 9, 5, 6, 1, 2, 4, 3, 4, 2, 2, 7, 2, 1, 7, 3, 3, 9, 8, 2, 5, 4, 1, 6, 2, 3, 3, 0, 2, 5, 6, 2, 4, 6, 5, 4, 6, 2, 6, 3, 3, 0, 9, 8, 3, 6, 6, 1, 9, 9, 5, 4, 7, 2, 4, 5, 7, 1, 4, 5, 7, 5, 6, 6, 2, 6, 0, 3, 8, 6, 9, 6, 3, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The probability that two numbers are coprime given that they are both coprime to a randomly chosen third number. - Luke Palmer, Apr 27 2019

LINKS

Table of n, a(n) for n=0..97.

G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]

FORMULA

Equals A065473*zeta(2)/A065463. - Luke Palmer, Apr 27 2019

EXAMPLE

0.6695802905390623676350256956124342...

MATHEMATICA

digits = 98; Exp[NSum[(1/2)*(-2 + (-2)^n - ((1/2)*(-1 - Sqrt[5]))^n*(-1 + Sqrt[5]) + ((1/2)*(-1 + Sqrt[5]))^n*(1 + Sqrt[5]))*PrimeZetaP[n - 1]/(n - 1), {n, 3, Infinity}, WorkingPrecision -> 4 digits, Method -> "AlternatingSigns"]] // RealDigits[#, 10, digits]& // First (* Jean-Fran├žois Alcover, Apr 18 2016 *)

CROSSREFS

Cf. A065592, A078081.

Cf. A065463, A065473.

Sequence in context: A217852 A021603 A250721 * A198116 A200023 A198115

Adjacent sequences:  A065477 A065478 A065479 * A065481 A065482 A065483

KEYWORD

cons,nonn

AUTHOR

N. J. A. Sloane, Nov 19 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 29 10:34 EST 2020. Contains 331337 sequences. (Running on oeis4.)