login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A065478 Decimal expansion of product(1 - p/(p^3-1)), p prime >= 2). 1
5, 7, 5, 9, 5, 9, 9, 6, 8, 8, 9, 2, 9, 4, 5, 4, 3, 9, 6, 4, 3, 1, 6, 3, 3, 7, 5, 4, 9, 2, 4, 9, 6, 6, 9, 2, 5, 0, 6, 5, 1, 3, 9, 6, 7, 1, 7, 6, 4, 9, 2, 3, 6, 3, 6, 0, 0, 6, 4, 0, 7, 9, 8, 6, 6, 5, 3, 7, 2, 5, 5, 1, 6, 9, 8, 8, 6, 8, 5, 2, 8, 4, 3, 6, 4, 0, 9, 8, 7, 2, 0, 9, 1, 7, 2, 6, 1, 8 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Table of n, a(n) for n=0..97.

Sungjin Kim, Average Results on the Order of a modulo p, arXiv:1509.01752 [math.NT], 2015.

P. Kurlberg, C. Pomerance, On a Problem of Arnold: the average multiplicative order of a given integer, Algebra and Number Theory, 7 (2013), pp. 981-999.

G. Niklasch, Some number theoretical constants: 1000-digit values [Cached copy]

P. J. Stephens, Prime divisors of second-order linear recurrences. I, , J. Number Theory, 8(3):313-332, 1976.

Eric Weisstein's World of Mathematics, Stephens' Constant

EXAMPLE

0.57595996889294543964316337549249669...

MATHEMATICA

$MaxExtraPrecision = 100; m0 = 200; dm = 200; digits = 101; Clear[f]; f[m_] := f[m] = (slog = Normal[Series[Log[1 - p/(p^3 - 1)], {p, Infinity, m}]]; Exp[slog] /. Power[p, n_] -> PrimeZetaP[-n] // N[#, digits+10]&); f[m = m0]; Print[m, " ", f[m]]; f[m = m + dm]; While[Print[m, " ", f[m]]; RealDigits[f[m], 10, digits+5] != RealDigits[f[m - dm], 10, digits+5], m = m + dm]; RealDigits[f[m], 10, digits] // First (* Jean-Fran├žois Alcover, Sep 15 2015 *)

CROSSREFS

Cf. A078079.

Sequence in context: A217167 A195498 A065746 * A109353 A247827 A205694

Adjacent sequences:  A065475 A065476 A065477 * A065479 A065480 A065481

KEYWORD

cons,nonn

AUTHOR

N. J. A. Sloane, Nov 19 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified July 30 20:41 EDT 2016. Contains 275186 sequences.