login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A238244 A recursive sequence: a(n) = Fibonacci(n)*a(n-1) + 3. 3
1, 4, 11, 36, 183, 1467, 19074, 400557, 13618941, 749041758, 66664716465, 9599719170963, 2236734566834382, 843248931696562017, 514381848334902830373, 507694884306549093578154, 810788730237558902444311941, 2095078078933852203916102055547 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Generally, sequence a(n) = Fibonacci(n)*a(n-1) + p, with a(1)=1 and fixed p, is asymptotic to  c(p) * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where constant c(p) = A062073 * (p*A101689 - p + 1).

LINKS

Table of n, a(n) for n=1..18.

FORMULA

a(n) ~ c * ((1+sqrt(5))/2)^(n^2/2+n/2) / 5^(n/2), where c = A062073 * (3*A101689-2) = 7.4996979520811499717534... is product of Fibonacci factorial constant (see A062073) and -2+3*sum_{n>=1} 1/product(A000045(k), k=1..n).

MATHEMATICA

RecurrenceTable[{a[n]==Fibonacci[n]*a[n-1]+3, a[1]==1}, a, {n, 1, 20}]

CROSSREFS

Cf. A176343, A238243, A003266, A101689, A062073, A000045, A139339.

Sequence in context: A149245 A054105 A300772 * A247816 A017939 A282702

Adjacent sequences:  A238241 A238242 A238243 * A238245 A238246 A238247

KEYWORD

nonn

AUTHOR

Vaclav Kotesovec, Feb 20 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 15 19:43 EDT 2021. Contains 342977 sequences. (Running on oeis4.)