The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003267 Central Fibonomial coefficients.
(Formerly M4272)
7
1, 1, 6, 60, 1820, 136136, 27261234, 14169550626, 19344810307020, 69056421075989160, 645693859487298425256, 15803204856220738696714416, 1012673098498882654470985390406, 169885799961166470686816475170920550, 74614732877610423587753604318734054624100 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The largest prime factor of a(n): 1, 1, 3, 5, 13, 17, 89, 233, 233, 1597, 1597, 1597, 28657, 28657, 28657, 514229, 514229, 514229, 514229, 514229, 514229, 514229, 433494437, 433494437, 2971215073, ..., . The union of the above list is: 1, 3, 5, 13, 17, 89, 233, 1597, 28657, 514229, 433494437, 2971215073, 14736206161, 46165371073, 92180471494753, 99194853094755497, ... . - Robert G. Wilson v, Dec 04 2009
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. Brousseau, A sequence of power formulas, Fib. Quart., 6 (1968), 81-83.
A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 74.
Phakhinkon Phunphayap, Various Problems Concerning Factorials, Binomial Coefficients, Fibonomial Coefficients, and Palindromes, Ph. D. Thesis, Silpakorn University (Thailand 2021).
Phakhinkon Phunphayap, Prapanpong Pongsriiam, Explicit Formulas for the p-adic Valuations of Fibonomial Coefficients, J. Int. Seq. 21 (2018), #18.3.1.
Eric Weisstein's World of Mathematics, Central Fibonomial Coefficient [From Eric W. Weisstein, Dec 08 2009]
Eric Weisstein's World of Mathematics, q-Binomial Coefficient.
FORMULA
For n > 0, a(n) = (-1)^floor(n/2)*det(M(n, -1))/det(M(n, 0)) where M(n, m) is the n X n matrix with coefficient 1/F(i+j+m), i=1..n, j=1..n. - Benoit Cloitre, Jun 05 2004
For n > 0, a(n) = -(GoldenRatio^(n^2) QPochhammer[(-1)^n GoldenRatio^(-2 n), -GoldenRatio^-2, 1 + n])/((-1 + (-1)^n GoldenRatio^(-2 n)) QPochhammer[ -GoldenRatio^-2, -GoldenRatio^-2, n]). - Eric W. Weisstein, Dec 08 2009
a(n) ~ phi^(n^2) / C, where phi = A001622 = (1+sqrt(5))/2 is the golden ratio and C = A062073 = 1.22674201072035324441763... is the Fibonacci factorial constant. - Vaclav Kotesovec, Apr 10 2015
a(n) = phi^(n^2) * C(2*n, n)_{-1/phi^2}, where phi = (1+sqrt(5))/2 = A001622 is the golden ratio, and C(n, k)_q is the q-binomial coefficient. - Vladimir Reshetnikov, Sep 26 2016
a(n) = A010048(2*n, n). - Vladimir Reshetnikov, Sep 27 2016
MAPLE
with(combinat): a := n -> product(fibonacci(n+k+1), k=0..n-1)/product(fibonacci(k), k=1..n):
seq(a(n), n=0..20);
MATHEMATICA
f[n_] := Product[Fibonacci[n + k + 1]/Fibonacci[k + 1], {k, 0, n - 1}]; Array[f, 14, 0] (* Robert G. Wilson v, Dec 04 2009 *)
Flatten[{1, Table[Round[-(GoldenRatio^(n^2) QPochhammer[(-1)^n GoldenRatio^(-2 n), -GoldenRatio^-2, 1 + n])/((-1 + (-1)^n GoldenRatio^(-2 n)) QPochhammer[ -GoldenRatio^-2, -GoldenRatio^-2, n])], {n, 1, 15}]}] (* Vaclav Kotesovec, Apr 10 2015 after Eric W. Weisstein *)
Round@Table[GoldenRatio^(n^2) QBinomial[2 n, n, -1/GoldenRatio^2], {n, 0, 20}] (* Round is equivalent to FullSimplify here, but is much faster - Vladimir Reshetnikov, Sep 25 2016 *)
PROG
(PARI) a(n)=prod(k=0, n-1, fibonacci(n+k+1))/prod(k=1, n, fibonacci(k))
for(n=0, 14, print1(a(n), ", "))
CROSSREFS
Bisection of A003268. Cf. A008341.
Sequence in context: A251184 A329319 A351165 * A271681 A010574 A363789
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Sascha Kurz and Rick L. Shepherd, Mar 24 2002
a(1) = 1 added by N. J. A. Sloane, Dec 06 2009
Typo in second formula corrected by Vaclav Kotesovec, Apr 10 2015
Offset corrected from 1 to 0, formulae and programs are updated accordingly by Vladimir Reshetnikov, Sep 27 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 29 10:24 EDT 2024. Contains 372938 sequences. (Running on oeis4.)