|
|
A321084
|
|
Primes prime(n) such that 1 + Sum_{k=1..n} 2^(prime(k)-1) is prime.
|
|
0
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Primes prime(n) such that A080355(n+1) is prime.
The prime p = 19 gives the prime 332887 = 1010001010001010111_2.
The positions of 1's from the end are 1, 2, 3, 5, 7, 11, 13, 17, 19.
Let S(n) = Sum_{k=1..n} 2^(prime(k)-1). Conjecture: q(n) = 1 + S(n) is prime if and only if 2^S(n) == 1 (mod q(n)).
|
|
LINKS
|
Table of n, a(n) for n=1..6.
|
|
EXAMPLE
|
a(3) = 5 since 1 + 2^(2-1) + 2^(3-1) + 2^(5-1) = 10111_2 = 23 is prime.
Note that prime(3) = 5 and A080355(3+1) = 23 prime.
|
|
MATHEMATICA
|
Prime@ Select[Range[10^3], PrimeQ[1 + Total@ Array[2^(Prime[#] - 1) &, #]] &] (* Michael De Vlieger, Oct 31 2018 *)
|
|
PROG
|
(PARI) isok(p) = isprime(p) && isprime(1 + sum(k=1, primepi(p), 2^(prime(k)-1))); \\ Michel Marcus, Oct 27 2018
|
|
CROSSREFS
|
Cf. A000040, A000043, A080355, A113878.
Sequence in context: A128363 A106047 A048826 * A054798 A127078 A184252
Adjacent sequences: A321081 A321082 A321083 * A321085 A321086 A321087
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Thomas Ordowski, Oct 27 2018
|
|
EXTENSIONS
|
a(5)-a(6) from Robert Israel, Oct 27 2018
|
|
STATUS
|
approved
|
|
|
|