|
|
A338186
|
|
Expansion of (2-6*x-12*x^2)/((1-x)^2*(1-9*x)).
|
|
1
|
|
|
2, 16, 126, 1100, 9850, 88584, 797174, 7174468, 64570098, 581130752, 5230176622, 47071589436, 423644304746, 3812798742520, 34315188682470, 308836698142004, 2779530283277794, 25015772549499888, 225141952945498718, 2026277576509488172, 18236498188585393242, 164128483697268538856
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The locally small terms 4^k in A322469 occur at the positions a(k) (for k = 0..9, and probably in general; cf. conjectures in A322469).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 11*a(n-1) - 19*a(n-2) + 9*a(n-3) for n >= 3.
|
|
EXAMPLE
|
|
|
MAPLE
|
f:= gfun:-rectoproc({a(n)=11*a(n-1)-19*a(n-2)+9*a(n-3), a(0)=2, a(1)=16, a(2)=126}, a(n), remember): map(f, [$0..21]);
|
|
MATHEMATICA
|
CoefficientList[Series[(2-6*x-12*x^2)/((1-x)^2*(1-9*x)), {x, 0, 21}], x]
|
|
PROG
|
(PARI) my(x='x+O('x^22)); Vec((2-6*x-12*x^2)/((1-x)^2*(1-9*x)))
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|