login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093548
a(n) is the smallest number m such that each of the numbers m and m+1 has n distinct prime divisors.
14
2, 14, 230, 7314, 254540, 11243154, 965009045, 65893166030, 5702759516090, 490005293940084, 76622240600506314
OFFSET
1,1
COMMENTS
Prime factors may be repeated in m and m+1. The difference between this sequence and A052215 is that in the latter, no prime factor may be repeated. So A052215 imposes more stringent conditions, hence a(n) <= A052215(n). - N. J. A. Sloane, Nov 21 2015
2^63 < a(12) <= 22593106657425552170. - Donovan Johnson, Jan 08 2009
A115186(n) <= a(n) <= A052215(n). - Zak Seidov, Jan 16 2015
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 230, p. 65, Ellipses, Paris 2008.
FORMULA
a[n_] := (For[m=1, !(Length[FactorInteger[m]]==n && Length[FactorInteger[m+1]]==n), m++ ];m)
EXAMPLE
a(5) = 254540 because 254540=2^2*5*11*13*89; 254541=3*7*17*23*31
and 254540 is the smallest number m which each of the numbers m & m+1 has 5 distinct prime divisors.
In contrast, A052215(5) = 378014 > 254540. - N. J. A. Sloane, Nov 21 2015
MATHEMATICA
a[n_] := (For[m=1, !(Length[FactorInteger[m]]==n && Length[FactorInteger[m+1]]==n), m++ ]; m); Do[Print[a[n]], {n, 7}]
Flatten[Table[SequencePosition[PrimeNu[Range[260000]], {n, n}, 1], {n, 5}], 1][[;; , 1]] (* To generate more terms, increase the Range and n constants. *) (* Harvey P. Dale, Jun 08 2023 *)
PROG
(Python)
from sympy import primefactors, primorial
def a(n):
m = primorial(n)
while True:
if len(primefactors(m)) == n:
if len(primefactors(m+1)) == n: return m
else: m += 2
else: m += 1
for n in range(1, 6):
print(a(n), end=", ") # Michael S. Branicky, Feb 14 2021
CROSSREFS
Cf. A052215 (another version), A093549, A093550, A115186.
Sequence in context: A323693 A118086 A048163 * A052215 A053846 A053855
KEYWORD
nonn,more
AUTHOR
Farideh Firoozbakht, Apr 06 2004
EXTENSIONS
a(8), a(9) from Martin Fuller, Jan 17 2006
a(10)-a(11) from Donovan Johnson, Jan 08 2009
STATUS
approved