OFFSET
1,1
COMMENTS
Prime factors may be repeated in m and m+1. The difference between this sequence and A052215 is that in the latter, no prime factor may be repeated. So A052215 imposes more stringent conditions, hence a(n) <= A052215(n). - N. J. A. Sloane, Nov 21 2015
2^63 < a(12) <= 22593106657425552170. - Donovan Johnson, Jan 08 2009
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 230, p. 65, Ellipses, Paris 2008.
FORMULA
a[n_] := (For[m=1, !(Length[FactorInteger[m]]==n && Length[FactorInteger[m+1]]==n), m++ ];m)
EXAMPLE
a(5) = 254540 because 254540=2^2*5*11*13*89; 254541=3*7*17*23*31
and 254540 is the smallest number m which each of the numbers m & m+1 has 5 distinct prime divisors.
In contrast, A052215(5) = 378014 > 254540. - N. J. A. Sloane, Nov 21 2015
MATHEMATICA
a[n_] := (For[m=1, !(Length[FactorInteger[m]]==n && Length[FactorInteger[m+1]]==n), m++ ]; m); Do[Print[a[n]], {n, 7}]
Flatten[Table[SequencePosition[PrimeNu[Range[260000]], {n, n}, 1], {n, 5}], 1][[;; , 1]] (* To generate more terms, increase the Range and n constants. *) (* Harvey P. Dale, Jun 08 2023 *)
PROG
(Python)
from sympy import primefactors, primorial
def a(n):
m = primorial(n)
while True:
if len(primefactors(m)) == n:
if len(primefactors(m+1)) == n: return m
else: m += 2
else: m += 1
for n in range(1, 6):
print(a(n), end=", ") # Michael S. Branicky, Feb 14 2021
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Farideh Firoozbakht, Apr 06 2004
EXTENSIONS
a(8), a(9) from Martin Fuller, Jan 17 2006
a(10)-a(11) from Donovan Johnson, Jan 08 2009
STATUS
approved