Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Dec 03 2024 08:42:41
%S 1,1,1,1,12,1,1,117,117,1,1,1080,10530,1080,1,1,9801,882090,882090,
%T 9801,1,1,88452,72243171,666860040,72243171,88452,1,1,796797,
%U 5873190687,491992666011,491992666011,5873190687,796797,1,1,7173360,476309310660,360089838858960,3267815287645062,360089838858960,476309310660,7173360,1
%N Triangular array read by rows: T(n,k) is the number of n X n idempotent matrices over GF(3) having rank k, n>=0, 0<=k<=n.
%C A matrix M is idempotent if M^2 = M.
%F Sum_{n>=0} Sum{k=0..n} T(n,k)*y^k*x^n/B(n) = e(x)*e(y*x) where e(x) = Sum_{n>=0} x^n/B(n) and B(n) = A053290(n)/2^n.
%F T(n,k) = A022167(n,k) * A118180(n,k). - _Alois P. Heinz_, Dec 02 2024
%e Triangle T(n,k) begins:
%e 1;
%e 1, 1;
%e 1, 12, 1;
%e 1, 117, 117, 1;
%e 1, 1080, 10530, 1080, 1;
%e 1, 9801, 882090, 882090, 9801, 1;
%e ...
%p b:= proc(n, k) option remember; `if`(k<0 or k>n, 0,
%p `if`(n=0, 1, b(n-1, k-1)+3^k*b(n-1, k)))
%p end:
%p T:= (n,k)-> 3^(k*(n-k))*b(n, k):
%p seq(seq(T(n,k), k=0..n), n=0..8); # _Alois P. Heinz_, Dec 02 2024
%t nn = 7; B[n_, q_] := \[Gamma][n, q]/(q - 1)^n; \[Zeta][x_] := Sum[x^n/B[n, 3], {n, 0, nn}];Map[Select[#, # > 0 &] &, Table[B[n, 3], {n,0,nn}]*CoefficientList[Series[\Zeta][x] \[Zeta][y x], {x, 0, nn}], {x, y}]] // Grid
%Y Cf. A296548, A053846 (row sums).
%Y Cf. A022167, A118180.
%K nonn,tabl,new
%O 0,5
%A _Geoffrey Critzer_, Dec 02 2024