login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,m) = 2*A022168(n,m) - binomial(n, m), 0 <= m <= n, read by rows.
1

%I #17 May 11 2019 02:12:25

%S 1,1,1,1,8,1,1,39,39,1,1,166,708,166,1,1,677,11584,11584,677,1,1,2724,

%T 186171,753590,186171,2724,1,1,10915,2981685,48417191,48417191,

%U 2981685,10915,1,1,43682,47718190,3101684114,12443227012,3101684114,47718190

%N Triangle T(n,m) = 2*A022168(n,m) - binomial(n, m), 0 <= m <= n, read by rows.

%C Row sums are 1, 2, 10, 80, 1042, 24524, 1131382, 102819584, 18742118986, 6775774063892, 4926666912583390, ... = 2*A006118(n) - 2^n.

%C This triangle essentially compares a Gaussian binomial equivalent to Pascal's triangle and Pascal's triangle itself. - _Alonso del Arte_, Nov 14 2011

%e Triangle begins

%e 1;

%e 1, 1;

%e 1, 8, 1;

%e 1, 39, 39, 1;

%e 1, 166, 708, 166, 1;

%e 1, 677, 11584, 11584, 677, 1;

%e 1, 2724, 186171, 753590, 186171, 2724, 1;

%e 1, 10915, 2981685, 48417191, 48417191, 2981685, 10915, 1;

%e 1, 43682, 47718190, 3101684114, 12443227012, 3101684114, 47718190, 43682, 1;

%p A174528 := proc(n,k)

%p 2*A022168(n,k)-binomial(n,k) ;

%p end proc:

%p seq(seq(A174528(n,m),m=0..n),n=0..10) ; # _R. J. Mathar_, Nov 14 2011

%t c[n_, q_] = Product[1 - q^i, {i, 1, n}];

%t t[n_, m_, q_] = 2*c[n, q]/(c[m, q]*c[n - m, q]) - Binomial[n, m];

%t Table[Flatten[Table[Table[t[n, m, q], {m, 0, n}], {n, 0, 10}]], {q, 2, 12}]

%t (* alternate program *)

%t (* First run the program for A022168 to define gaussianBinom *)

%t Column[Table[2gaussianBinom[n, k, 4] - Binomial[n, k], {n, 0, 8}, {k, 0, n}], Center] (* _Alonso del Arte_, Nov 14 2011 *)

%K nonn,tabl

%O 0,5

%A _Roger L. Bagula_ and _Gary W. Adamson_, Mar 21 2010