login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A174531
Coefficients of polynomials described below.
4
1, 1, 3, 4, 2, 4, 5, 25, 32, 3, 19, 32, 7, 77, 294, 384, 4, 52, 240, 384, 9, 174, 1323, 4614, 6144, 5, 110, 967, 3934, 6144, 11, 330, 4169, 27258, 90992, 122880, 6, 200, 2842, 21040, 79832, 122880, 13, 559, 10569, 110513, 664898, 2161848, 2949120, 7, 329, 6867, 79687, 533630, 1935048
OFFSET
1,3
COMMENTS
These polynomials are defined by the recursion: P_1=1, P_2=1, and for n >= 2, P_{n+1}(k) = (k+n)*P_n(k) +(1/2)*(2*k+n+1)*P_n(k+1) + (1/4)*(4*k+n)*(n/2-1)!*binomial(k+n/2-1,n/2-1), if n is even;
P_{n+1}(k) = ((k+n)/(4*k+2*n))*P_n(k) + (1/4)*P_n(k+1) +((4*k+n)/(8*k+4*n))*((n-1)/2)!*binomial(k+(n-1)/2,(n-1)/2), if n is odd.
Conjectures: (1) all terms of the sequence are integers; (2) P_n(0) = (floor((n-1)/2))!*4^(floor((n-1)/2)); (3) if n is even, then the coefficients of P_n do not exceed the corresponding coefficients of P_(n-1) and the equality holds only for the last ones; (4) all coefficients of P_n, except of the last one, are multiples of n iff n is prime.
More conjectures: For even x, P[x, 1] = (2^x - 1) (x/2)! / (x+1), and for odd x, P[x, 1] = (2^x - 1) ((x-1) / 2)!. - Peter J. C. Moses, Sep 28 2011
Theorem: The polynomials take integer values for integer k. - Vladimir Shevelev and Peter J. C. Moses, Oct 27 2011
Theorem: (a) P_n(x) is a polynomial of degree m=floor((n-1)/2) whose coefficients multiplied by m! are integers; (b) if P_n(x) = a_0(n){x}^{m} + a_1(n){x}^{m-1} + ... + a_{m-1}(n){x} + a_m(n), then a_i(n)=U_i(n), if n is odd, and a_i(n)=V_i(n), if n is even, where U_i, V_i are polynomials in n of degree 2i+1. The first such polynomials are
U_0 = n,
U_1 = (n-1)*n*(7*n-5)/24,
U_2 = (n-3)*(n-1)*n*(29*n^2 - 44*n + 7)/640,
U_3 = (n-5)*(n-3)*(n-1)*n*(1581*n^3 - 3775*n^2 + 1587*n + 223)/322560,
U_4 = (n-7)*(n-5)*(n-3)*(n-1)*n*(12683*n^4 - 42160*n^3 + 31378*n^2 + 3568*n - 2013)/30965760;
V_0 = n/2,
V_1 = (n-2)*n*(7*n-4)/48,
V_2 = (n-4)*(n-2)*n*(87*n^2 - 98*n + 16)/3840,
V_3 = (n-6)*(n-4)*(n-2)*n*(1581*n^3 - 2686*n^2 + 936*n + 64)/645120,
V_4 = (n-8)*(n-6)*(n-4)*(n-2)*n*(12683*n^4 - 29372*n^3 + 16228*n^2 + 1040*n - 768)/61931520. - Vladimir Shevelev and Peter J. C. Moses, Nov 26 2011
Theorem: All terms of the sequence are integers. - Vladimir Shevelev and Peter J. C. Moses, Dec 03 2011
LINKS
V. Shevelev and P. Moses, On a sequence of polynomials with hypothetically integer coefficients, arXiv:1112.5715 [math.NT], 2011.
V. Shevelev and P. Moses, On a sequence of polynomials with hypothetically integer coefficients, INTEGERS, V.13 (2013) Article #A9, 1-29.
FORMULA
From Vladimir Shevelev, Oct 11 2011: (Start)
P_n(k) = c_n(k)*(2^(n+k-1) - R_k(n)/(2k-2)!!), where c_n(k) = ((n-1)/2)!*Product_{i=1..k-1} (n+i)/(n+2i), if n is odd,
c_n(k) = (1/2)*((n-2)/2)!*Product_{i=0..k-1} (n+i)/(n+2i+1), if n is even, and R_k(n), k=0,1,..., are polynomials in n of degree k-1 (for k >= 1) with integer coefficients, defined by the recursion R_0(n)=0, R_1(n)=1, and for k >= 1, R_(k+1)(n) = 4*k*(R_k(n+1) - R_k(n)) + (n+4k)*Product_{i=1..k-1} (n+k+i).
The sequence of polynomials R's for k >= 0 begins: 0, 1, n+4, n^2 + 11*n + 32, n^3 + 21*n^2 + 152*n + 384, n^4 + 34*n^3 + 443*n^2 + 2642*n + 6144, ... This formula proves the conjecture of V. Shevelev for P_n(0) and P. Moses for P_n(1). (End)
Formula for positive argument k: P_n(k) = ((n-1)/2)! * binomial((n-1)/2+k-1,k-1) / binomial(n+2*k-2,k-1) * T_n(k), if n is odd; P_n(k) = (n/2-1)! * binomial(n/2+k-1,k) / binomial(n+2*k-1,k) * T_n(k), if n is even, where T_n(k) = Sum_{i=1..n} * 2^(i-1) * binomial(n+2*k-i-1,k-1). - Vladimir Shevelev, Oct 23 2011
For even n >= 4, P_n(x) = (n+x-1)*P_(n-2)(x+1) + (x - 1 + n/2)*(x - 2 + n/2)...(x+1); for odd n >= 3, P_n(x) = 2(n + x - 1)*P_(n-1)(x) + (x - 1 + (n-1)/2)*(x - 2 + (n-1)/2)...x. These formulas yield the integrality of all coefficients of P_n(x). - Vladimir Shevelev and Peter J. C. Moses, Dec 03 2011
Formula for negative argument: P_n(-m) = 2^(n-2m-1) * binomial(n-m-1,m-1)/binomial((n-2)/2,m-1) * ((n-2)/2)!, if n is even and 0 < m <= (n-2)/2; P_n(-m) = 2^(n-2m-1) * (binomial(n-m-1,m)/binomial((n-1)/2,m)) * ((n-1)/2)!, if n is odd and 0 < m <= (n-1)/2. It is interesting that this formula is significantly simpler than the above formula for positive arguments. - Vladimir Shevelev, Feb 14 2013; edited by Joerg Arndt and M. F. Hasler, Feb 23 2013
EXAMPLE
Sequence of the polynomials begins:
P_1 = 1,
P_2 = 1,
P_3 = 3*k + 4,
P_4 = 2*k + 4,
P_5 = 5*k^2 + 25*k + 32,
P_6 = 3*k^2 + 19*k + 32,
P_7 = 7*k^3 + 77*k^2 + 294*k + 384,
P_8 = 4*k^3 + 52*k^2 + 240*k + 384,
P_9 = 9*k^4 + 174*k^3 + 1323*k^2 + 4614*k + 6144,
P_10 = 5*k^4 + 110*k^3 + 967*k^2 + 3934*k + 6144,
P_11 = 11*k^5 + 330*k^4 + 4169*k^3 + 27258*k^2 + 90992*k + 122880,
P_12 = 6*k^5 + 200*k^4 + 2842*k^3 + 22040*k^2 + 79832*k + 122880,
...
MAPLE
B := proc(x, n)
mul((x-i+1)/i, i=1..n) ;
expand(%) ;
end proc:
A174531p := proc(n, x)
if n = 1 or n =2 then
1;
elif type(n, 'odd') then
thalf := (n-1)/2 ;
(x+n-1)*procname(n-1, x)+(2*x+n)*procname(n-1, x+1)/2 +
(4*x+n-1)*(thalf-1)!*B(x+thalf-1, thalf-1)/4 ;
else
thalf := (n-2)/2 ;
(x+n-1)*procname(n-1, x)/(4*x+2*n-2)
+procname(n-1, x+1)/4 +
(4*x+n-1)*thalf!*B(x+thalf, thalf)/(8*x+4*n-4) ;
fi ;
expand(%) ;
factor(%) ;
expand(%) ;
end proc:
for n from 1 to 14 do
for k from floor((n-1)/2) to 0 by -1 do
printf("%d, ", coeftayl(A174531p(n, x), x=0, k)) ;
end do:
end do: # R. J. Mathar, Sep 27 2011
MATHEMATICA
p[1, k_]:=1; p[2, k_]:=1; p[t_?OddQ, k_]:=p[t, k]=Expand[Factor[FunctionExpand[(k+t-1) p[t-1, k]+1/2 (2 k+t) p[t-1, k+1]+1/4 (4 k+t-1) (1/2 (t-3))! Binomial[1/2 (2 k+t-3), 1/2 (t-3)]]]]; p[t_?EvenQ, k_]:=p[t, k]=Expand[Factor[FunctionExpand[((k+t-1) p[t-1, k])/(4 k+2 (t-1))+1/4 p[t-1, k+1]+((4 k+t-1) (1/2 (t-2))! Binomial[k+t/2-1, 1/2 (t-2)])/(8 k+4 (t-1))]]]; A174531=Flatten[Table[Reverse[CoefficientList[p[n, k], k]], {n, 1, 14}]] (* Peter J. C. Moses, Sep 28 2011 *)
PROG
(PARI)
P(n)={ n<3 & return(k->1); if( n%2, k-> (k+n-1)*P(n-1)(k)+(1/2)*(2*k+n)*P(n-1)(k+1)+(1/4)*(4*k+n-1)*((n-3)/2)!*binomial(k+(n-3)/2, (n-3)/2), k-> ((k+n-1)/(4*k+2*n-2))*P(n-1)(k)+(1/4)*P(n-1)(k+1)+((4*k+n-1)/(8*k+4*n-4))*(n/2-1)!* binomial(k+n/2-1, n/2-1))}
for(n=1, 19, print(P(n)(k))) /* or, to list coefficients: */
for(n=1, 19, apply(t->print1(t", "), Vec(P(n)(k))); print) \\ M. F. Hasler, Sep 27 2011
CROSSREFS
Sequence in context: A084511 A084521 A214923 * A021296 A323100 A161173
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Mar 21 2010
EXTENSIONS
Coefficients of P_12 corrected by D. S. McNeil, Sep 27 2011
STATUS
approved