login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A214923
Total count of 1's in binary representation of Fibonacci(n) and previous Fibonacci numbers, minus total count of 0's. That is, partial sums of b(n) = -A037861(Fibonacci(n)).
1
-1, 0, 1, 1, 3, 4, 2, 4, 5, 3, 7, 8, 4, 6, 9, 7, 13, 16, 12, 9, 12, 10, 11, 18, 14, 9, 10, 14, 17, 22, 18, 19, 15, 19, 20, 18, 18, 21, 15, 13, 18, 24, 24, 27, 33, 32, 43, 37, 28, 31, 33, 32, 31, 29, 24, 30, 34, 27, 35, 35, 26, 22, 32, 35, 31, 37, 30, 36, 19, 18
OFFSET
0,5
COMMENTS
b(n) = -A037861(Fibonacci(n)) begins: -1, 1, 1, 0, 2, 1, -2, 2, 1, -2, 4, 1, -4, 2, 3, -2, 6, 3, -4, -3, 3, -2, 1, 7, -4, -5, 1, 4, 3, 5, -4, 1, -4, 4, 1, -2, 0. For example b(6) = -A037861(Fibonacci(6)) = -A037861(8) = -2.
Conjecture: a(n) contains infinitely many positive and infinitely many negative terms.
MATHEMATICA
Accumulate[Table[f = Fibonacci[n]; Count[IntegerDigits[f, 2], 1] - Count[IntegerDigits[f, 2], 0], {n, 0, 100}]] (* T. D. Noe, Jul 30 2012 *)
PROG
(Java)
import static java.lang.System.out;
import java.math.BigInteger;
public class A214923 {
public static void main (String[] args) { // 51 minutes
BigInteger prpr = BigInteger.valueOf(0);
BigInteger prev = BigInteger.valueOf(1), curr;
long n, c0=1, c1, sum=0, count0=0, countPos=0, countNeg=0, max=0, min=0, maxAt=0, minAt=0;
for (n=0; n<10000000; ++n) {
c1 = prpr.bitCount();
if (n>0)
c0 = prpr.bitLength() - c1;
sum += c1-c0;
out.printf("%d, ", sum);
if (sum>0) ++countPos; else
if (sum<0) ++countNeg; else
++count0;
if (sum>max) { max=sum; maxAt=n; }
if (sum<min) { min=sum; minAt=n; }
curr = prev.add(prpr);
prpr = prev;
prev = curr;
//if ((n&65535)==0)
// out.printf("%d %d %d %d %d %d %d %d\n", n,
// countPos, countNeg, count0, max, maxAt, min, minAt);
}
out.printf("\n\n%d %d %d %d %d %d %d %d\n", n,
countPos, countNeg, count0, max, maxAt, min, minAt);
/// 10000000 6882307 3117686 7 3743769 5463976 -2088795 7963846
}
}
CROSSREFS
Sequence in context: A243111 A084511 A084521 * A174531 A021296 A323100
KEYWORD
sign,base,easy
AUTHOR
Alex Ratushnyak, Jul 29 2012
STATUS
approved