login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A323100
Square array read by ascending antidiagonals: T(p,q) is the number of bases e such that e^2 = -1 in Clifford algebra Cl(p,q)(R).
4
0, 0, 1, 1, 1, 3, 4, 2, 4, 6, 10, 6, 6, 10, 10, 20, 16, 12, 16, 20, 16, 36, 36, 28, 28, 36, 36, 28, 64, 72, 64, 56, 64, 72, 64, 56, 120, 136, 136, 120, 120, 136, 136, 120, 120, 240, 256, 272, 256, 240, 256, 272, 256, 240, 256, 496, 496, 528, 528, 496, 496, 528, 528, 496, 496, 528
OFFSET
0,6
COMMENTS
Cl(p,q)(R) is a 2^(p+q)-dimensional algebraic structure generated by {e_1, e_2, ..., e_(p+q)}, where (e_1)^2 = (e_2)^2 = ... = (e_p)^2 = +1, (e_(p+1))^2 = (e_(p+2))^2 = ... = (e_q)^2 = -1, (e_i)*(e_j) = -(e_j)*(e_i) for any i != j (anti-commutativity), ((e_i)*(e_j))*(e_k) = (e_i)*((e_j)*(e_k)) for any i, j, k (associativity). So the 2^(p+q) basis are all elements of the form Product_{s=1..t} e_(i_s) where 1 <= i_1 < i_2 < ... < i_t <= p + q and {i_1, i_2, ..., i_t} runs through all 2^(p+q) subsets of {1, 2, ..., p + q} (due to the failure of commutativity, one should be careful when taking continued products). Examples include: the real numbers Cl(0,0)(R), the complex numbers Cl(0,1)(R), split-complex numbers Cl(1,0)(R), quaternions Cl(1,0)(R), etc. If p + q = p' + q', then Cl(p,q)(R) is equal to Cl(p',q')(R) if and only if T(p,q) = T(p',q').
It can be shown that (Product_{s=1..t} e_(i_s))^2 = (-1)^(t*(t-1)/2)*(Product_{s=1..t} (e_(i_s))^2). So (Product_{s=1..t} e_(i_s))^2 = -1 if and only if t == 0, 1 (mod 4) and #({i_1, i_2, ..., i_t} intersect {p + 1, p + 2, ..., p + q}) is odd, or t == 2, 3 (mod 4) and #({i_1, i_2, ..., i_t} intersect {p + 1, p + 2, ..., p + q}) is even.
In general, let A = (a_ij) be any n X n symmetric {-1,1}-matrix, we can define an algebraic structure generated by {e_1, e_2, ..., e_n} where (e_i)^2 = a_ii for i = 1..n, (e_i)*(e_j) = (a_ij)*(e_j)*(e_i) for any i != j, ((e_i)*(e_j))*(e_k) = (e_i)*((e_j)*(e_k)) for any i, j, k. Clifford algebras are the cases where a_ij = -1 for any i != j. It can be shown that (Product_{s=1..t} e_(i_s)) * (Product_{s'=1..u} e_(j_s')) = (Product_{s=1..t, s'=1..u, i_s>=j_s'} a_(i_s)(j_s')) * (Product_{s=1..v} e_(k_s)), where 1 <= k_1 < k_2 < ... < k_v <= n and {k_1, k_2, ..., k_v} is the symmetric difference between {i_1, i_2, ..., i_t} and {j_1, j_2, ..., j_u}. Specially, (Product_{s=1..t} e_(i_s)))^2 = Product_{1<=s'<=s<=n} a_ss'. The 2^n basis, together with their additive inverses, form a group of order 2^(n+1) under multiplication, which is abelian if and only if a_ij = 1 for any i != j (in this case, it is isomorphic to (C_2)^(n+1) if a_ii = 1 for i = 1..n, and (C_2)^(n-1) X C_4 otherwise). The structure of this group can be complicated. For example, when n = 2, it can be isomorphic to either (C_2)^3, C_2 X C_4, C_2 X D_4 or Q_8.
LINKS
FORMULA
T(p,q) = Sum_{i=0..p} Sum_{j=0..q} binomial(p, i)*binomial(q, j)*(binomial(i - j, 2) mod 2).
T(p,q) = 2^(p+q) - A323346(p,q).
EXAMPLE
Table begins
p\q| 0 1 2 3 4 5 ...
---+-------------------------------
0 | 0, 1, 3, 6, 10, 16, ...
1 | 0, 1, 4, 10, 20, 36, ...
2 | 1, 2, 6, 16, 36, 72, ...
3 | 4, 6, 12, 28, 64, 136, ...
4 | 10, 16, 28, 56, 120, 256, ...
5 | 20, 36, 64, 120, 240, 496, ...
...
Example for T(1,3) = 10: (Start)
1^2 = 1;
(e_1)^2 = 1;
(e_2)^2 = -1;
(e_3)^2 = -1;
(e_4)^2 = -1;
((e_1)*(e_2))^2 = -(e_1)^2*(e_2)^2 = 1;
((e_1)*(e_3))^2 = -(e_1)^2*(e_3)^2 = 1;
((e_1)*(e_4))^2 = -(e_1)^2*(e_4)^2 = 1;
((e_2)*(e_3))^2 = -(e_2)^2*(e_3)^2 = -1;
((e_2)*(e_4))^2 = -(e_2)^2*(e_4)^2 = -1;
((e_3)*(e_4))^2 = -(e_3)^2*(e_4)^2 = -1;
((e_1)*(e_2)*(e_3))^2 = -(e_1)^2*(e_2)^2*(e_3)^2 = -1;
((e_1)*(e_2)*(e_4))^2 = -(e_1)^2*(e_2)^2*(e_4)^2 = -1;
((e_1)*(e_3)*(e_4))^2 = -(e_1)^2*(e_3)^2*(e_4)^2 = -1;
((e_2)*(e_3)*(e_4))^2 = -(e_2)^2*(e_3)^2*(e_4)^2 = 1;
((e_1)*(e_2)*(e_3)*(e_4))^2 = (e_1)^2*(e_2)^2*(e_3)^2*(e_4)^2 = -1. (End)
From Peter Luschny, Jan 13 2019: (Start)
The first few lines of the triangle T(i-j,j) are:
[0] 0;
[1] 0, 1;
[2] 1, 1, 3;
[3] 4, 2, 4, 6;
[4] 10, 6, 6, 10, 10;
[5] 20, 16, 12, 16, 20, 16;
[6] 36, 36, 28, 28, 36, 36, 28;
[7] 64, 72, 64, 56, 64, 72, 64, 56;
[8] 120, 136, 136, 120, 120, 136, 136, 120, 120;
[9] 240, 256, 272, 256, 240, 256, 272, 256, 240, 256; (End)
MAPLE
s := sqrt(2): h := n -> [ 0, -s, -2, -s, 0, s, 2, s][1 + modp(n+1, 8)]:
T := proc(n, k) option remember;
if n = 0 then return 2^(k - 1) + 2^((k - 3)/2)*h(k + 2) fi;
if k = 0 then return 2^(n - 1) + 2^((n - 3)/2)*h(n) fi;
T(n, k-1 ) + T(n-1, k) end:
for n from 0 to 9 do seq(T(n, k), k=0..9) od; # Peter Luschny, Jan 12 2019
MATHEMATICA
T[n_, k_] := Sum[Binomial[n, i] Binomial[k, j] Mod[Binomial[i - j, 2], 2], {i, 0, n}, {j, 0, k}];
Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 19 2019 *)
PROG
(PARI) T(p, q) = sum(i=0, p, sum(j=0, q, binomial(p, i)*binomial(q, j)*(binomial(i-j, 2)%2)))
CROSSREFS
Cf. A038505(n+1) (first row), A000749(n+1) (first column), A006516 (main diagonal),
A321959 (antidiagonal sums).
A323346 is the complement sequence.
Sequence in context: A214923 A174531 A021296 * A161173 A210875 A238373
KEYWORD
nonn,tabl
AUTHOR
Jianing Song, Jan 04 2019
STATUS
approved