OFFSET
1,1
COMMENTS
For such numbers n, all but 2 of the numbers from 1 to sigma(n) can be represented as the sum of distinct divisors of n. Because the sum of distinct divisors of practical numbers, A005153, can represent all numbers from 1 to sigma(n), it seems fitting to call the numbers in this sequence "almost practical". Stewart characterized the odd numbers in this sequence, for which the two excluded numbers are always 2 and sigma(n)-2. However, another possibility is for 4 and sigma(n)-4 to be excluded, which occurs for even numbers in this sequence. See A174534 and A174535.
Numbers k such that both k and k+1 are in this sequence: 134504, 636615, 648584, ... - Amiram Eldar, Sep 25 2019
Only numbers <= ceiling(sigma(n) / 2) must be checked if they're a sum as if m isn't a sum of distinct divisors then sigma(n) - m isn't either. - David A. Corneth, Sep 25 2019
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..3000
B. M. Stewart, Sums of distinct divisors, American Journal of Mathematics, Vol. 76, No. 4 (1954), pp. 779-785.
EXAMPLE
The divisors of 70 are 1, 2, 5, 7, 10, 14, 35, 70 and sigma(70) = 144. The numbers from 1 to 144 that can be represented as the sum of distinct divisors of 70 are 1, 2, 3=2+1, 5, 6=5+1, 7, ... , 138=70+35+14+10+7+2, 139=70+35+14+10+7+2+1, 141=70+59+7+5, 142=70+59+7+5+1, 143=70+59+7+5+2, 144=70+59+7+5+2+1. The only two excluded numbers are 4 and 140=sigma(70)-4 as mentionned in comments. - Bernard Schott, Sep 25 2019
MATHEMATICA
CountNumbers[n_] := Module[{d=Divisors[n], t, x}, t=CoefficientList[Product[1+x^i, {i, d}], x]; Count[Rest[t], _?(#>0&)]]; Select[Range[1000], CountNumbers[ # ] == DivisorSigma[1, # ]-2&]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 21 2010
STATUS
approved