login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Coefficients of numerator of recursively defined rational function: p(x,3)=x*(x^2 + 8*x + 1)/(1 - x)^4; p(x, n) = 2*x*D[p(x, n - 1), x] - p(x,n-2).
5

%I #10 Dec 18 2022 07:06:55

%S 1,1,1,1,8,1,1,39,39,1,1,158,482,158,1,1,605,4194,4194,605,1,1,2276,

%T 31047,67752,31047,2276,1,1,8515,210609,856075,856075,210609,8515,1,1,

%U 31802,1356368,9367974,17194910,9367974,1356368,31802,1,1,118713

%N Coefficients of numerator of recursively defined rational function: p(x,3)=x*(x^2 + 8*x + 1)/(1 - x)^4; p(x, n) = 2*x*D[p(x, n - 1), x] - p(x,n-2).

%D Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91.

%F p(x,0)= 1/(1 - x);

%F p(x,1)= x/(1 - x)^2;

%F p(x,2)= x*(1 + x)/(1 - x)^3;

%F p(x,3)= x*(x^2 +8*x + 1)/(1 - x)^4;

%F p(x,n)= 2*x*D[p[x, n - 1], x] - p[x, n - 2]

%e {1},

%e {1, 1},

%e {1, 8, 1},

%e {1, 39, 39, 1},

%e {1, 158, 482, 158, 1},

%e {1, 605, 4194, 4194, 605, 1},

%e {1, 2276, 31047, 67752, 31047, 2276, 1},

%e {1, 8515, 210609, 856075, 856075, 210609, 8515, 1},

%e {1, 31802, 1356368, 9367974, 17194910, 9367974, 1356368, 31802, 1},

%e {1, 118713, 8453460, 93489572, 285010254, 285010254, 93489572, 8453460, 118713, 1},

%e {1, 443072, 51564829, 876484896, 4159141218, 6855899968, 4159141218, 876484896, 51564829, 443072, 1}

%t p[x_, 0] := 1/(1 - x);

%t p[x_, 1] := x/(1 - x)^2;

%t p[x_, 2] := x*(1 + x)/(1 - x)^3;

%t p[x_, 3] := x*(x^2 + 8*x + 1)/(1 - x)^4;

%t p[x_, n_] := p[x, n] = 2*x*D[p[x, n - 1], x] - p[x, n - 2]

%t a = Table[CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x], {n, 1, 11}];

%t Flatten[a]

%t Table[Apply[Plus, CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x]], {n, 1, 11}];

%Y Cf. A123125, A142458.

%K nonn,tabl,uned,less

%O 1,5

%A _Roger L. Bagula_, Oct 12 2009