login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A166349
Coefficients of numerator of recursively defined rational function: p(x,3)=x*(x^2 + 6*x + 1)/(1 - x)^4; p(x, n) = 2*x*D[p(x, n - 1), x] - p(x,n-2).
5
1, 1, 1, 1, 6, 1, 1, 31, 31, 1, 1, 128, 382, 128, 1, 1, 493, 3346, 3346, 493, 1, 1, 1858, 24879, 54044, 24879, 1858, 1, 1, 6955, 169209, 683995, 683995, 169209, 6955, 1, 1, 25980, 1091460, 7496324, 13738230, 7496324, 1091460, 25980, 1, 1, 96985, 6809140
OFFSET
1,5
REFERENCES
Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
FORMULA
p(x,0)= 1/(1 - x);
p(x,1)= x/(1 - x)^2;
p(x,2)= x*(1 + x)/(1 - x)^3;
p(x,3)= x*(x^2 +6*x + 1)/(1 - x)^4;
p(x,n)= 2*x*D[p[x, n - 1], x] - p[x, n - 2]
EXAMPLE
{1},
{1, 1},
{1, 6, 1},
{1, 31, 31, 1},
{1, 128, 382, 128, 1},
{1, 493, 3346, 3346, 493, 1},
{1, 1858, 24879, 54044, 24879, 1858, 1},
{1, 6955, 169209, 683995, 683995, 169209, 6955, 1},
{1, 25980, 1091460, 7496324, 13738230, 7496324, 1091460, 25980, 1},
{1, 96985, 6809140, 74898500, 227852974, 227852974, 74898500, 6809140, 96985, 1},
{1, 361982, 41561069, 702794856, 3327271698, 5480955188, 3327271698, 702794856, 41561069, 361982, 1}
MATHEMATICA
p[x_, 0] := 1/(1 - x);
p[x_, 1] := x/(1 - x)^2;
p[x_, 2] := x*(1 + x)/(1 - x)^3;
p[x_, 3] := x*(x^2 + 6*x + 1)/(1 - x)^4;
p[x_, n_] := p[x, n] = 2*x*D[p[x, n - 1], x] - p[x, n - 2]
a = Table[CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x], {n, 1, 11}];
Flatten[a]
Table[Apply[Plus, CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x]], {n, 1, 11}];
CROSSREFS
Cf. A123125.
Sequence in context: A265603 A174186 A111578 * A176429 A157155 A022169
KEYWORD
nonn,tabl,uned,less
AUTHOR
Roger L. Bagula, Oct 12 2009
STATUS
approved