login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A166349 Coefficients of numerator of recursively defined rational function: p(x,3)=x*(x^2 + 6*x + 1)/(1 - x)^4; p(x, n) = 2*x*D[p(x, n - 1), x] - p(x,n-2). 5
1, 1, 1, 1, 6, 1, 1, 31, 31, 1, 1, 128, 382, 128, 1, 1, 493, 3346, 3346, 493, 1, 1, 1858, 24879, 54044, 24879, 1858, 1, 1, 6955, 169209, 683995, 683995, 169209, 6955, 1, 1, 25980, 1091460, 7496324, 13738230, 7496324, 1091460, 25980, 1, 1, 96985, 6809140 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
REFERENCES
Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
LINKS
FORMULA
p(x,0)= 1/(1 - x);
p(x,1)= x/(1 - x)^2;
p(x,2)= x*(1 + x)/(1 - x)^3;
p(x,3)= x*(x^2 +6*x + 1)/(1 - x)^4;
p(x,n)= 2*x*D[p[x, n - 1], x] - p[x, n - 2]
EXAMPLE
{1},
{1, 1},
{1, 6, 1},
{1, 31, 31, 1},
{1, 128, 382, 128, 1},
{1, 493, 3346, 3346, 493, 1},
{1, 1858, 24879, 54044, 24879, 1858, 1},
{1, 6955, 169209, 683995, 683995, 169209, 6955, 1},
{1, 25980, 1091460, 7496324, 13738230, 7496324, 1091460, 25980, 1},
{1, 96985, 6809140, 74898500, 227852974, 227852974, 74898500, 6809140, 96985, 1},
{1, 361982, 41561069, 702794856, 3327271698, 5480955188, 3327271698, 702794856, 41561069, 361982, 1}
MATHEMATICA
p[x_, 0] := 1/(1 - x);
p[x_, 1] := x/(1 - x)^2;
p[x_, 2] := x*(1 + x)/(1 - x)^3;
p[x_, 3] := x*(x^2 + 6*x + 1)/(1 - x)^4;
p[x_, n_] := p[x, n] = 2*x*D[p[x, n - 1], x] - p[x, n - 2]
a = Table[CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x], {n, 1, 11}];
Flatten[a]
Table[Apply[Plus, CoefficientList[FullSimplify[ExpandAll[(1 - x)^(n + 1)*p[x, n]/x]], x]], {n, 1, 11}];
CROSSREFS
Cf. A123125.
Sequence in context: A265603 A174186 A111578 * A176429 A157155 A022169
KEYWORD
nonn,tabl,uned,less
AUTHOR
Roger L. Bagula, Oct 12 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 21 13:19 EDT 2024. Contains 373544 sequences. (Running on oeis4.)