Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 11 2022 20:47:09
%S 1,1,1,1,12,1,1,27,27,1,1,58,162,58,1,1,121,718,718,121,1,1,248,2759,
%T 5744,2759,248,1,1,503,9765,36771,36771,9765,503,1,1,1014,32816,
%U 205674,367710,205674,32816,1014,1,1,2037,106560,1052408,3072594,3072594,1052408,106560,2037,1
%N Triangle T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4, read by rows.
%D Douglas C. Montgomery and Lynwood A. Johnson, Forecasting and Time Series Analysis, MaGraw-Hill, New York, 1976, page 91
%H G. C. Greubel, <a href="/A166343/b166343.txt">Rows n = 1..50 of the triangle, flattened</a>
%F T(n, k) = coefficients of ( t(n, x) ) where t(n, x) = (1-x)^(n+1)*p(n, x)/x, p(n, x) = x*D( p(n-1, x) ), with p(1, x) = x/(1-x)^2, p(2, x) = x*(1+x)/(1-x)^3, and p(3, x) = x*(1+12*x+x^2)/(1-x)^4.
%F From _G. C. Greubel_, Mar 11 2022: (Start)
%F T(n, k) = t(n-1, k) - t(n-1, k-1), T(n,1) = 1, where t(n, k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1, k-j)*b(n, j), b(n, k) = k^(n-2)*A063521(k), b(n, 0) = 1, and b(1, k) = 1.
%F T(n, n-k) = T(n, k). (End)
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 12, 1;
%e 1, 27, 27, 1;
%e 1, 58, 162, 58, 1;
%e 1, 121, 718, 718, 121, 1;
%e 1, 248, 2759, 5744, 2759, 248, 1;
%e 1, 503, 9765, 36771, 36771, 9765, 503, 1;
%e 1, 1014, 32816, 205674, 367710, 205674, 32816, 1014, 1;
%e 1, 2037, 106560, 1052408, 3072594, 3072594, 1052408, 106560, 2037, 1;
%t (* First program *)
%t p[x_, 1]:= x/(1-x)^2;
%t p[x_, 2]:= x*(1+x)/(1-x)^3;
%t p[x_, 3]:= x*(1+12*x+x^2)/(1-x)^4;
%t p[x_, n_]:= p[x, n]= x*D[p[x, n-1], x]
%t Table[CoefficientList[(1-x)^(n+1)*p[x, n]/x, x], {n,12}]//Flatten
%t (* Second program *)
%t b[n_, k_, m_]:= If[n<2, 1, If[k==0, 0, k^(n-1)*((m+3)*k^2 - m)/3]];
%t t[n_, k_, m_]:= t[n,k,m]= Sum[(-1)^(k-j)*Binomial[n+1, k-j]*b[n,j,m], {j,0,k}];
%t T[n_, k_, m_]:= T[n,k,m]= If[k==1, 1, t[n-1,k,m] - t[n-1,k-1,m]];
%t Table[T[n,k,4], {n,12}, {k,n}]//Flatten (* _G. C. Greubel_, Mar 11 2022 *)
%o (Sage)
%o def b(n,k,m):
%o if (n<2): return 1
%o elif (k==0): return 0
%o else: return k^(n-1)*((m+3)*k^2 - m)/3
%o @CachedFunction
%o def t(n,k,m): return sum( (-1)^(k-j)*binomial(n+1, k-j)*b(n,j,m) for j in (0..k) )
%o def A166343(n,k): return 1 if (k==1) else t(n-1,k,4) - t(n-1,k-1,4)
%o flatten([[A166343(n,k) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Mar 11 2022
%Y Cf. A166340, A166341, A166344, A166345, A166346, A166349.
%Y Cf. A063521, A123125.
%K nonn,tabl
%O 1,5
%A _Roger L. Bagula_, Oct 12 2009
%E Edited by _G. C. Greubel_, Mar 11 2022