login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A015110
Triangle of q-binomial coefficients for q=-3.
14
1, 1, 1, 1, -2, 1, 1, 7, 7, 1, 1, -20, 70, -20, 1, 1, 61, 610, 610, 61, 1, 1, -182, 5551, -15860, 5551, -182, 1, 1, 547, 49777, 433771, 433771, 49777, 547, 1, 1, -1640, 448540, -11662040, 35569222, -11662040, 448540, -1640, 1, 1, 4921, 4035220, 315323620
OFFSET
0,5
COMMENTS
May be read as a symmetric triangular (T[n,k]=T[n,n-k]; k=0,...,n; n=0,1,...) or square array (A[n,r]=A[r,n]=T[n+r,r], read by antidiagonals). The diagonals of the former (or rows/columns of the latter) are A000012 (k=0), A014983 (k=1), A015251 (k=2), A015268 (k=3), A015288 (k=4), A015306 (k=5), A015324 (k=6), A015340 (k=7), A015357 (k=8), A015375 (k=9), A015388 (k=10), A015407 (k=11), A015424 (k=12),... - M. F. Hasler, Nov 04 2012
LINKS
MATHEMATICA
Flatten[Table[QBinomial[n, m, -3], {n, 0, 50}, {m, 0, n}]] (* Vincenzo Librandi, Nov 01 2012 *)
PROG
(PARI) T015110(n, k, q=-3)=prod(i=1, k, (q^(1+n-i)-1)/(q^i-1)) \\ (Indexing is that of the triangular array: 0 <= k <= n = 0, 1, 2, ...) - M. F. Hasler, Nov 04 2012
CROSSREFS
Cf. analog triangles for other q: A015109 (q=-2), A015112 (q=-4), A015113 (q=-5), A015116 (q=-6), A015117 (q=-7), A015118 (q=-8), A015121 (q=-9), A015123 (q=-10), A015124 (q=-11), A015125 (q=-12), A015129 (q=-13), A015132 (q=-14), A015133 (q=-15); A022166 (q=2), A022167 (q=3), A022168, A022169, A022170, A022171, A022172, A022173, A022174 (q=10), A022175, A022176, A022177, A022178, A022179, A022180, A022181, A022182, A022183, A022184 (q=20), A022185, A022186, A022187, A022188. - M. F. Hasler, Nov 04 2012
Sequence in context: A158200 A220602 A166345 * A128596 A176305 A139349
KEYWORD
sign,tabl,easy
STATUS
approved