login
A015324
Gaussian binomial coefficient [ n,6 ] for q = -3.
2
1, 547, 448540, 315323620, 232740363922, 168973319623174, 123350523324917020, 89881489830655851460, 65533580739687859229563, 47771556642163840723529281, 34826053765400471578213696840
OFFSET
6,2
REFERENCES
J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99.
M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351.
LINKS
Index entries for linear recurrences with constant coefficients, signature (547,149331,-11711817,-316219059,2939282073,7848852129,-10460353203).
FORMULA
G.f.: x^6 / ( (x-1)*(27*x+1)*(81*x-1)*(729*x-1)*(9*x-1)*(3*x+1)*(243*x+1) ). - R. J. Mathar, Aug 04 2016
MATHEMATICA
Table[QBinomial[n, 6, -3], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *)
PROG
(Sage) [gaussian_binomial(n, 6, -3) for n in range(6, 17)] # Zerinvary Lajos, May 27 2009
CROSSREFS
Sequence in context: A263524 A300899 A253546 * A103537 A136928 A249297
KEYWORD
nonn,easy
AUTHOR
Olivier Gérard, Dec 11 1999
STATUS
approved