The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A015323 Gaussian binomial coefficient [ n,6 ] for q = -2. 3
 1, 43, 3655, 208335, 14208447, 882215391, 57344000415, 3642010817055, 233988483199263, 14946527496991519, 957498220445101855, 61250446192484546335, 3920970870875818419999, 250911985465716094666527 (list; graph; refs; listen; history; text; internal format)
 OFFSET 6,2 REFERENCES J. Goldman and G.-C. Rota, The number of subspaces of a vector space, pp. 75-83 of W. T. Tutte, editor, Recent Progress in Combinatorics. Academic Press, NY, 1969. I. P. Goulden and D. M. Jackson, Combinatorial Enumeration. Wiley, NY, 1983, p. 99. M. Sved, Gaussians and binomials, Ars. Combinatoria, 17A (1984), 325-351. LINKS Vincenzo Librandi, Table of n, a(n) for n = 6..200 Index entries for linear recurrences with constant coefficients, signature (43,1806,-26488,-211904,924672,1409024,-2097152). FORMULA A015323(n) = T[n,6] where T is the triangular array A015109. - M. F. Hasler, Nov 04 2012 G.f.: x^6 / ( (x-1)*(8*x+1)*(64*x-1)*(2*x+1)*(32*x+1)*(4*x-1)*(16*x-1) ). - R. J. Mathar, Aug 04 2016 MATHEMATICA Table[QBinomial[n, 6, -2], {n, 6, 20}] (* Vincenzo Librandi, Oct 29 2012 *) PROG (Sage) [gaussian_binomial(n, 6, -2) for n in range(6, 20)] # Zerinvary Lajos, May 27 2009 CROSSREFS Diagonal k=6 of the triangular array A015109. See there for further references and programs. - M. F. Hasler, Nov 04 2012 Sequence in context: A130014 A246535 A265234 * A145315 A110704 A060485 Adjacent sequences:  A015320 A015321 A015322 * A015324 A015325 A015326 KEYWORD nonn,easy AUTHOR Olivier Gérard, Dec 11 1999 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 13 17:09 EDT 2021. Contains 345008 sequences. (Running on oeis4.)