login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = 1 + A176343(n) - A176343(k) - A176343(n-k), triangle read by rows (n >= 0, 0 <= k <= n).
3

%I #15 Sep 08 2022 08:45:52

%S 1,1,1,1,1,1,1,3,3,1,1,11,13,11,1,1,65,75,75,65,1,1,568,632,640,632,

%T 568,1,1,7789,8356,8418,8418,8356,7789,1,1,168761,176549,177114,

%U 177168,177114,176549,168761,1,1,5847568,6016328,6024114,6024671,6024671,6024114,6016328,5847568,1

%N T(n,k) = 1 + A176343(n) - A176343(k) - A176343(n-k), triangle read by rows (n >= 0, 0 <= k <= n).

%H G. C. Greubel, <a href="/A176344/b176344.txt">Rows n = 0..75 of triangle, flattened</a>

%e Triangle begins:

%e 1;

%e 1, 1;

%e 1, 1, 1;

%e 1, 3, 3, 1;

%e 1, 11, 13, 11, 1;

%e 1, 65, 75, 75, 65, 1;

%e 1, 568, 632, 640, 632, 568, 1;

%e 1, 7789, 8356, 8418, 8418, 8356, 7789, 1;

%e 1, 168761, 176549, 177114, 177168, 177114, 176549, 168761, 1;

%e ...

%p with(combinat);

%p b:= proc(n) option remember;

%p if n = 0 then 0 else 1+fibonacci(n)*b(n-1)

%p fi; end proc;

%p T:= proc (n, k) 1+b(n)-b(n-k)-b(k) end proc;

%p seq(seq(T(n, k), k = 0..n), n = 0..10); # _G. C. Greubel_, Dec 08 2019

%t b[n_]:= b[n]= If[n==0, 0, Fibonacci[n]*b[n-1] + 1]; (* A176343 *)

%t T[n_, k_]:= T[n, k] = 1 + a[n] - a[n-k] - a[k];

%t Table[T[n, k], {n,0,10}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Dec 08 2019 *)

%o (Maxima) (a[0] : 0, a[n] := fib(n)*a[n-1] + 1, T(n, m) := 1 + a[n] - a[m] - a[n-m])$ create_list(T(n, m), n, 0, 10, m, 0, n); /* _Franck Maminirina Ramaharo_, Nov 25 2018 */

%o (PARI) b(n) = if(n==0, 0, 1 + fibonacci(n)*b(n-1) );

%o T(n,k) = 1 + b(n) - b(n-k) - b(k);

%o for(n=0,10, for(k=0,n, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Dec 07 2019

%o (Magma)

%o function b(n)

%o if n eq 0 then return 0;

%o else return 1 + Fibonacci(n)*b(n-1);

%o end if; return b; end function;

%o function T(n,k) return 1 + b(n) - b(n-k) - b(k); end function; [ T(n,k) : k in [0..n], n in [0..10]]; // _G. C. Greubel_, Dec 07 2019

%o (Sage)

%o def b(n):

%o if (n==0): return 0

%o else: return 1 + fibonacci(n)*b(n-1)

%o def T(n,k): return 1 + b(n) - b(n-k) - b(k)

%o [[T(n,k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Dec 07 2019

%o (GAP)

%o b:= function(n)

%o if n=0 then return 0;

%o else return 1 + Fibonacci(n)*b(n-1);

%o fi; end;

%o T:= function(n,k) return 1 + b(n) - b(n-k) - b(k); end;

%o Flat(List([0..10], n-> List([0..n], k-> T(n,k) ))); # _G. C. Greubel_, Dec 07 2019

%Y Cf. A156070, A156072, A176305, A176306, A176307, A176625, A176339.

%K nonn,tabl,easy

%O 0,8

%A _Roger L. Bagula_, Apr 15 2010

%E Edited and name clarified by _Franck Maminirina Ramaharo_, Nov 25 2018