Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 May 30 2022 16:32:53
%S 0,0,0,0,0,0,1,3,3,1,1,8,18,16,5,1,18,78,136,105,30,1,38,288,856,1205,
%T 810,210,1,78,978,4576,10305,12090,7140,1680,1,158,3168,22216,74405,
%U 134370,134610,70560,15120,1,318,9978,101536,483105,1252650,1882860,1641360,771120,151200
%N Triangle T_4(n, m), the number of surjective multi-valued functions from {1, 1, 1, 1, 2, 3, ..., n-3} to {1, 2, 3, ..., m} by rows (n >= 1, 1 <= m <= n).
%C T_4(1, m) = T_4(2, m) = T_4(3, m) = 0 by definition. T_4(n, m) also gives the number of ordered partitions of {1, 1, 1, 1, 2, 3, ..., n-3} into exactly m parts.
%H G. C. Greubel, <a href="/A172108/b172108.txt">Rows n = 1..50 of the triangle, flattened</a>
%H M. Griffiths and I. Mezo, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Griffiths/griffiths11.html">A generalization of Stirling Numbers of the Second Kind via a special multiset</a>, JIS 13 (2010) #10.2.5.
%F T_4(n, m) = Sum_{j=0..m} binomial(m,j)*binomial(j+3,4)*(-1)^(m-j)*j^(n-4), for n >= 4, with T(n, k) = 0 for n < 4.
%F Sum_{k=1.n} T_4(n, k) = A172111(n).
%F Sum_{k=1..n} (-1)^k*T_4(n, k) = 0. - _G. C. Greubel_, Apr 14 2022
%e Triangle begins as:
%e 0;
%e 0, 0;
%e 0, 0, 0;
%e 1, 3, 3, 1;
%e 1, 8, 18, 16, 5;
%e 1, 18, 78, 136, 105, 30;
%e 1, 38, 288, 856, 1205, 810, 210;
%e 1, 78, 978, 4576, 10305, 12090, 7140, 1680;
%e 1, 158, 3168, 22216, 74405, 134370, 134610, 70560, 15120;
%e 1, 318, 9978, 101536, 483105, 1252650, 1882860, 1641360, 771120, 151200;
%t f[r_, n_, m_]:= Sum[Binomial[m, l] Binomial[l+r-1, r] (-1)^(m-l) l^(n-r), {l,m}]; For[n = 4, n <= 10, n++, Print[Table[f[4, n, m], {m, 1, n}]]]
%o (Magma)
%o T:= func< n,k,m | n lt 4 select 0 else (&+[(-1)^(k+j)*Binomial(k,j)*Binomial(j+m-1,m)*j^(n-m): j in [1..k]]) >;
%o [T(n,k,4): k in [1..n], n in [1..12]]; // _G. C. Greubel_, Apr 14 2022
%o (SageMath)
%o def T(n,k,m):
%o if (n<4): return 0
%o else: return sum( (-1)^(k-j)*binomial(k,j)*binomial(j+m-1,m)*j^(n-m) for j in (1..k) )
%o flatten([[T(n,k,4) for k in (1..n)] for n in (1..12)]) # _G. C. Greubel_, Apr 14 2022
%Y This is related to A019538, A172106 and A172107.
%Y Row sums give A172111.
%K nonn,tabl
%O 1,8
%A _Martin Griffiths_, Jan 25 2010