OFFSET
0,3
COMMENTS
Satisfies a(n+1) - 2*a(n) + a(n-1) = (2/3)*(1 + w^(n+1) + w^(2n+2)), a(0)=0 & a(1)=1 where w is the imaginary cubic root of unity. - Robert G. Wilson v, Jun 24 2002
First differences have this pattern: (+1) +1 +1 +3 +3 +3 +5 +5 +5 +7 +7 +7 +9 +9 +9. - Alexandre Wajnberg, Dec 19 2005
In Duistermaat (2010) section 11.3 The Planar Four-Bar Link on page 516: "It follows from (4.3.2) that the number of k-periodic fibers of the QRT automorphism, counted with multiplicities, is equal to \nu(\tau^S)^k) = 3n^2 - 1 when k = 3n, 3n^2 + 2n when k = 3n + 1, 3n^2 + 4n + 1 when k = 3n + 2, for every integer n." - Michael Somos, Mar 14 2023
REFERENCES
J. J. Duistermaat, Discrete Integrable Systems, 2010, Springer Science+Business Media.
LINKS
J. Bader, Kobon Triangles
Gilles Clement and Johannes Bader, Tighter Upper Bound for the Number of Kobon Triangles, Unpublished, 2007
Gilles Clement and Johannes Bader, Tighter Upper Bound for the Number of Kobon Triangles, Unpublished, 2007 [Cached copy, with permission]
Taylor Short, The saturation number of carbon nanocones and nanotubes, arXiv:1807.11355 [math.CO], 2018.
Eric Weisstein's World of Mathematics, Kobon Triangle
Index entries for linear recurrences with constant coefficients, signature (2,-1,1,-2,1).
FORMULA
From Ralf Stephan, May 05 2004: (Start)
a(n) = n^2 - ceiling(n*(n-1)/3).
G.f.: x*(1+2x^2-x^3)/((1+x+x^2)(1-x)^3). (End)
a(n) = floor(n*(n+2)/3). - Saburo Tamura, sent by Alexandre Wajnberg, Dec 19 2005
a(3*n - 1) = 3*n^2 - 1, a(3*n) = 3*n^2 + 2*n, a(3*n + 1) = 3*n^2 + 4*n + 1. - Michael Somos, Mar 14 2023
EXAMPLE
G.f. = x + 2*x^2 + 5*x^3 + 8*x^4 + 11*x^5 + 16*x^6 + 21*x^7 + 26*x^8 + ... - Michael Somos, Mar 14 2023
MAPLE
MATHEMATICA
Table[ Floor[ n(n + 1)(n + 2)/(n + (n + 1) + (n + 2))], {n, 0, 55}]
Table[Floor[n (n + 2)/3], {n, 0, 100}] (* Wesley Ivan Hurt, Dec 20 2013 *)
LinearRecurrence[{2, -1, 1, -2, 1}, {0, 1, 2, 5, 8}, 60] (* Harvey P. Dale, Jun 06 2016 *)
PROG
(PARI) a(n)=n*(n+2)\3 \\ Charles R Greathouse IV, Jun 11 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Patrick De Geest, May 15 1998
EXTENSIONS
Name change suggested by Wesley Ivan Hurt, Dec 20 2013
STATUS
approved