login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A340855
Numbers that can be factored into factors > 1, the least of which is odd.
19
3, 5, 7, 9, 11, 12, 13, 15, 17, 18, 19, 21, 23, 24, 25, 27, 29, 30, 31, 33, 35, 36, 37, 39, 40, 41, 42, 43, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 60, 61, 63, 65, 66, 67, 69, 70, 71, 72, 73, 75, 77, 78, 79, 80, 81, 83, 84, 85, 87, 89, 90, 91, 93, 95
OFFSET
1,1
COMMENTS
These are numbers that are odd or have an odd divisor 1 < d <= n/d.
EXAMPLE
The sequence of terms together with their prime indices begins:
3: {2} 27: {2,2,2} 48: {1,1,1,1,2}
5: {3} 29: {10} 49: {4,4}
7: {4} 30: {1,2,3} 50: {1,3,3}
9: {2,2} 31: {11} 51: {2,7}
11: {5} 33: {2,5} 53: {16}
12: {1,1,2} 35: {3,4} 54: {1,2,2,2}
13: {6} 36: {1,1,2,2} 55: {3,5}
15: {2,3} 37: {12} 56: {1,1,1,4}
17: {7} 39: {2,6} 57: {2,8}
18: {1,2,2} 40: {1,1,1,3} 59: {17}
19: {8} 41: {13} 60: {1,1,2,3}
21: {2,4} 42: {1,2,4} 61: {18}
23: {9} 43: {14} 63: {2,2,4}
24: {1,1,1,2} 45: {2,2,3} 65: {3,6}
25: {3,3} 47: {15} 66: {1,2,5}
For example, 72 is in the sequence because it has three suitable factorizations: (3*3*8), (3*4*6), (3*24).
MATHEMATICA
Select[Range[100], Function[n, n>1&&(OddQ[n]||Select[Rest[Divisors[n]], OddQ[#]&&#<=n/#&]!={})]]
CROSSREFS
The version looking at greatest factor is A057716.
The version for twice-balanced is A340657, with complement A340656.
These factorization are counted by A340832.
The complement is A340854.
A033676 selects the maximum inferior divisor.
A038548 counts inferior divisors, listed by A161906.
A055396 selects the least prime index.
- Factorizations -
A001055 counts factorizations.
A045778 counts strict factorizations.
A316439 counts factorizations by product and length.
A339890 counts factorizations of odd length.
A340653 counts balanced factorizations.
- Odd -
A000009 counts partitions into odd parts.
A024429 counts set partitions of odd length.
A026424 lists numbers with odd Omega.
A066208 lists Heinz numbers of partitions into odd parts.
A067659 counts strict partitions of odd length (A030059).
A174726 counts ordered factorizations of odd length.
A332304 counts strict compositions of odd length.
A340692 counts partitions of odd rank.
Sequence in context: A362022 A162495 A107315 * A230078 A275669 A191275
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 04 2021
STATUS
approved