login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A340857 Decimal expansion of constant K5 = 29*log(2+sqrt(5))*(Product_{primes p == 1 (mod 5)} (1-4*(2*p-1)/(p*(p+1)^2)))/(15*Pi^2). 2
2, 6, 2, 6, 5, 2, 1, 8, 8, 7, 2, 0, 5, 3, 6, 7, 6, 6, 6, 7, 5, 9, 6, 2, 0, 1, 1, 4, 7, 2, 0, 8, 8, 3, 4, 6, 5, 3, 0, 2, 0, 4, 3, 9, 3, 0, 6, 4, 7, 4, 4, 7, 3, 9, 1, 0, 6, 8, 2, 5, 5, 1, 0, 5, 8, 7, 0, 9, 2, 6, 6, 8, 3, 8, 6, 9, 0, 2, 2, 7, 4, 1, 7, 9, 4, 1, 9, 3, 8, 3, 6, 5, 5, 2, 3, 5, 0, 0, 2, 0, 1, 0, 0, 8, 9, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Finch and Sebah, 2009, p. 7 (see link) call this constant K_5. K_5 is related to the Mertens constant C(5,1) (see A340839). For more references see the links in A340711. Finch and Sebah give the following definition:

Consider the asymptotic enumeration of m-th order primitive Dirichlet characters mod n. Let b_m(n) denote the count of such characters. There exists a constant 0 < K_m < oo such that Sum_{n <= N} b_m(n) ∼ K_m*N*log(N)^(d(m) - 2) as N -> oo, where d(m) is the number of divisors of m.

LINKS

Table of n, a(n) for n=0..105.

Steven Finch and Pascal Sebah, Residue of a Mod 5 Euler Product, arXiv:0912.3677 [math.NT], 2009 p. 10.

FORMULA

Equals (29/25)*(Product_{primes p} (1-1/p)^2*(1+gcd(p-1,5)/(p-1))) [Finch and Sebah, 2009, p. 10].

EXAMPLE

0.262652188720536766675962011472088346530204393064744739106825510587...

MATHEMATICA

$MaxExtraPrecision = 1000; digits = 121; f[p_] := (1 - 4*(2*p-1)/(p*(p+1)^2));

coefs = Rest[CoefficientList[Series[Log[f[1/x]], {x, 0, 1000}], x]];

S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);

P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]]*S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];

m = 2; sump = 0; difp = 1; While[Abs[difp] > 10^(-digits - 5) || difp == 0, difp = coefs[[m]]*P[5, 1, m]; sump = sump + difp; PrintTemporary[m]; m++];

RealDigits[Chop[N[29*Log[2+Sqrt[5]]/(15*Pi^2) * Exp[sump], digits]], 10, digits-1][[1]] (* Vaclav Kotesovec, Jan 25 2021, took over 50 minutes *)

CROSSREFS

Cf. A340878 (K3), A340879 (K4).

Cf. A340004, A340794, A340665, A340127.

Cf. A340629, A340710, A340711, A340628.

Cf. A175646, A301429, A333240.

Cf. A175647, A248930, A248938, A335963.

Cf. A340576, A340577, A340578, A334826.

Sequence in context: A270360 A163904 A152780 * A241040 A151705 A170861

Adjacent sequences:  A340854 A340855 A340856 * A340858 A340859 A340860

KEYWORD

nonn,cons

AUTHOR

Artur Jasinski, Jan 24 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 9 08:25 EDT 2021. Contains 343699 sequences. (Running on oeis4.)