login
A340628
Decimal expansion of Product_{primes p == 4 (mod 5)} (p^2+1)/(p^2-1).
15
1, 0, 0, 9, 9, 3, 5, 9, 3, 4, 8, 2, 9, 4, 0, 1, 0, 2, 7, 3, 4, 9, 0, 3, 8, 4, 8, 8, 2, 4, 1, 7, 7, 8, 1, 6, 7, 7, 1, 5, 8, 5, 8, 5, 4, 7, 5, 4, 8, 8, 0, 1, 0, 1, 3, 0, 5, 8, 1, 9, 3, 2, 7, 9, 5, 1, 1, 8, 5, 9, 2, 6, 4, 5, 3, 1, 8, 0, 1, 2, 4, 5, 8, 9, 3, 6, 3, 1, 2, 2, 6, 0, 2, 5, 8, 9, 9, 2, 9, 9, 8, 8, 6, 4, 7, 8, 1, 5, 5, 6, 2, 6, 2, 1, 3, 2, 2, 5, 4, 6, 2
OFFSET
1,4
LINKS
Salma Ettahri, Olivier Ramaré, and Léon Surel, Fast multi-precision computation of some Euler products, arXiv:1908.06808 [math.NT], 2019 p.20 (70 digits precision data).
Steven Finch, Greg Martin, and Pascal Sebah, Roots of unity and nullity modulo n, Proc. Amer. Math. Soc. Volume 138, Number 8, August 2010, pp. 2729-2743.
Steven Finch and Pascal Sebah, Residue of a Mod 5 Euler Product, arXiv:0912.3677 [math.NT], 2009 (formulas).
Alessandro Languasco and Alessandro Zaccagnini, On the constant in the Mertens product for arithmetic progressions. I. Identities, Funct. Approx. Comment. Math. Volume 42, Number 1 (2010), 17-27, (preliminary version).
Richard J. Mathar, Table of Dirichlet L-Series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015.
FORMULA
Equals 6*sqrt(5)/(13*A340629).
Equals 6*sqrt(13)*Pi^2/(195*g) where g = sqrt(Cl2(2*Pi/5)^2 + Cl2(4*Pi/5)^2) = 1.0841621352693895..., and Cl2 is the Clausen function of order 2. Formula by Pascal Sebah (personal communication). - Artur Jasinski, Jan 20 2021
Equals A340127^2/A340809. - R. J. Mathar, Jan 22 2021
Equals Sum_{q in A004618} 2^A001221(q)/q^2. - R. J. Mathar, Jan 27 2021
EXAMPLE
1.009935934829401027349038488241778167715858547548801013...
MAPLE
evalf(Re(2*Pi^2/(5*sqrt(13*((I*Pi^2*(1/150)-I*polylog(2, (-1)^(2/5)))^2+((1/150)*(11*I)*Pi^2+I*polylog(2, (-1)^(4/5)))^2)))), 120) # Vaclav Kotesovec, Jan 20 2021, after formula by Pascal Sebah
MATHEMATICA
S[m_, n_, s_] := (t = 1; sums = 0; difs = 1; While[Abs[difs] > 10^(-digits - 5) || difs == 0, difs = (MoebiusMu[t]/t) * Log[If[s*t == 1, DirichletL[m, n, s*t], Sum[Zeta[s*t, j/m]*DirichletCharacter[m, n, j]^t, {j, 1, m}]/m^(s*t)]]; sums = sums + difs; t++]; sums);
P[m_, n_, s_] := 1/EulerPhi[m] * Sum[Conjugate[DirichletCharacter[m, r, n]] * S[m, r, s], {r, 1, EulerPhi[m]}] + Sum[If[GCD[p, m] > 1 && Mod[p, m] == n, 1/p^s, 0], {p, 1, m}];
Z[m_, n_, s_] := (w = 1; sumz = 0; difz = 1; While[Abs[difz] > 10^(-digits - 5), difz = P[m, n, s*w]/w; sumz = sumz + difz; PrintTemporary["iteration = ", w, ", difference = ", N[difz, digits]]; w++]; Exp[sumz]);
$MaxExtraPrecision = 1000; digits = 121; Chop[N[1/(Z[5, 4, 4]/Z[5, 4, 2]^2), digits]] (* Vaclav Kotesovec, Jan 15 2021, took over 20 minutes *)
digits = 121; digitize[c_] := RealDigits[Chop[N[c, digits]], 10, digits][[1]];
cl[x_] :=I(PolyLog[2, (-1)^x] - PolyLog[2, -(-1)^(1-x)]);
A340628 :=(4 Pi^2)/(5 Sqrt[13])/ Sqrt[cl[2/5]^2 + cl[4/5]^2];
digitize[A340628] (* Peter Luschny, Jan 23 2021 *)
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jan 13 2021
EXTENSIONS
Corrected and more terms from Vaclav Kotesovec, Jan 15 2021
STATUS
approved