OFFSET
1,7
COMMENTS
By "trapezoid" here is meant a quadrilateral with exactly one pair of parallel sides.
Without loss of generality we assume b=d and for the parallel sides c < a. e and f are uniquely determined by e = f = sqrt((c(a^2-b^2) + a(b^2-c^2))/(a-c)). The smallest possible isosceles trapezoid has side lengths a=4, c=3, b=d=2 and diagonals e=f=4.
EXAMPLE
a(7)=2 because there are two possible trapezoids: a=5, c=3, b=d=7, e=f=8 and a=7, c=4, b=d=6, e=f=8.
MATHEMATICA
n=65; list={};
For[a=1, a<=n, a++,
For[c=1, c<a, c++,
For[d=Floor[(a-c)/2]+1, d<=n, d++,
For[b=1, b<=n, b++,
se=c(a^2-b^2)+a(d^2-c^2); sf=c(a^2-d^2)+a(b^2-c^2);
If[se<=0||sf>se, Break[]]; If[sf<=0, Continue[]];
e=Sqrt[se/(a-c)]; f=Sqrt[sf/(a-c)];
If[IntegerQ[e]&&IntegerQ[f]&&a+d>f&&d+f>a&&f+a>d&&e+b>a&&b+a>e&&a+e>b, AppendTo[list, {a, b, c, d, e, f}]]]]]]
Table[Select[list, Max[#[[1]], #[[2]], #[[3]], #[[4]]]==n&&#[[2]]==#[[4]]&]//Length, {n, 1, 65}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Herbert Kociemba, Jan 24 2021
STATUS
approved