login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362022
a(n) is the least positive integer whose binary expansion is the concatenation of the binary expansions of two numbers whose product is n.
2
3, 5, 7, 9, 11, 11, 15, 17, 15, 21, 23, 19, 27, 23, 23, 33, 35, 27, 39, 37, 31, 43, 47, 35, 45, 45, 39, 39, 59, 43, 63, 65, 47, 69, 47, 51, 75, 77, 55, 69, 83, 55, 87, 75, 63, 87, 95, 67, 63, 85, 71, 77, 107, 75, 91, 71, 79, 93, 119, 79, 123, 95, 79, 129, 93
OFFSET
1,1
COMMENTS
For any prime number p, a(p) is the least of the binary concatenation of p with 1 or the binary concatenation of 1 with p.
LINKS
FORMULA
a(n) <= 2*n + 1.
a(n) <= 2^A070939(n) + n.
a(n) = Min_{d | n} A163621(n/d, d).
EXAMPLE
The first terms, alongside their binary expansion split into two parts, are:
n a(n) bin(a(n))
-- ---- ---------
1 3 1|1
2 5 10|1
3 7 11|1
4 9 100|1
5 11 101|1
6 11 10|11
7 15 111|1
8 17 1000|1
9 15 11|11
10 21 1010|1
11 23 1011|1
12 19 100|11
13 27 1101|1
14 23 10|111
15 23 101|11
MATHEMATICA
Table[Min@ Map[FromDigits[Join @@ #, 2] &, Join @@ {#, Reverse /@ #}] &@ Map[IntegerDigits[#, 2] &, Transpose@{#, n/#}, {2}] &@ TakeWhile[Divisors[n], # <= Sqrt[n] &], {n, 60}] (* Michael De Vlieger, Apr 07 2023 *)
PROG
(PARI) a(n, base = 2) = { my (v = oo); fordiv (n, d, v = min(v, n/d * base^#digits(d, base) + d); ); return (v); }
(Python)
from sympy import divisors
def a(n): return min(d+((n//d)<<d.bit_length()) for d in divisors(n))
print([a(n) for n in range(1, 66)]) # Michael S. Branicky, Apr 05 2023
CROSSREFS
Cf. A070939, A163621, A362023 (decimal variant).
Sequence in context: A206544 A122799 A345425 * A162495 A107315 A340855
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Apr 05 2023
STATUS
approved