login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the least positive integer whose binary expansion is the concatenation of the binary expansions of two numbers whose product is n.
2

%I #17 Apr 07 2023 10:51:31

%S 3,5,7,9,11,11,15,17,15,21,23,19,27,23,23,33,35,27,39,37,31,43,47,35,

%T 45,45,39,39,59,43,63,65,47,69,47,51,75,77,55,69,83,55,87,75,63,87,95,

%U 67,63,85,71,77,107,75,91,71,79,93,119,79,123,95,79,129,93

%N a(n) is the least positive integer whose binary expansion is the concatenation of the binary expansions of two numbers whose product is n.

%C For any prime number p, a(p) is the least of the binary concatenation of p with 1 or the binary concatenation of 1 with p.

%H Michael De Vlieger, <a href="/A362022/b362022.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) <= 2*n + 1.

%F a(n) <= 2^A070939(n) + n.

%F a(n) = Min_{d | n} A163621(n/d, d).

%e The first terms, alongside their binary expansion split into two parts, are:

%e n a(n) bin(a(n))

%e -- ---- ---------

%e 1 3 1|1

%e 2 5 10|1

%e 3 7 11|1

%e 4 9 100|1

%e 5 11 101|1

%e 6 11 10|11

%e 7 15 111|1

%e 8 17 1000|1

%e 9 15 11|11

%e 10 21 1010|1

%e 11 23 1011|1

%e 12 19 100|11

%e 13 27 1101|1

%e 14 23 10|111

%e 15 23 101|11

%t Table[Min@ Map[FromDigits[Join @@ #, 2] &, Join @@ {#, Reverse /@ #}] &@ Map[IntegerDigits[#, 2] &, Transpose@{#, n/#}, {2}] &@ TakeWhile[Divisors[n], # <= Sqrt[n] &], {n, 60}] (* _Michael De Vlieger_, Apr 07 2023 *)

%o (PARI) a(n, base = 2) = { my (v = oo); fordiv (n, d, v = min(v, n/d * base^#digits(d, base) + d);); return (v); }

%o (Python)

%o from sympy import divisors

%o def a(n): return min(d+((n//d)<<d.bit_length()) for d in divisors(n))

%o print([a(n) for n in range(1, 66)]) # _Michael S. Branicky_, Apr 05 2023

%Y Cf. A070939, A163621, A362023 (decimal variant).

%K nonn,base

%O 1,1

%A _Rémy Sigrist_, Apr 05 2023