login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362025
a(n) is the least number that reaches 1 after n iterations of the infinitary totient function A064380.
1
2, 3, 4, 5, 9, 11, 16, 17, 28, 29, 46, 47, 99, 145, 167, 205, 314, 397, 437, 793, 851, 1137, 1693, 2453, 2771, 2989, 3701, 5099, 6801, 9299, 12031, 15811, 16816, 21520, 21521, 29547, 39685, 62077, 83191, 103473, 112117, 149535, 157159, 196049, 200267, 303022
OFFSET
1,1
FORMULA
A362024(a(n)) = n, and A362024(k) < n for all k < a(n).
MATHEMATICA
infCoprimeQ[n1_, n2_] := Module[{g = GCD[n1, n2]}, If[g == 1, True, AllTrue[FactorInteger[g][[;; , 1]], BitAnd @@ IntegerExponent[{n1, n2}, #] == 0 &]]];
iphi[n_] := Sum[Boole[infCoprimeQ[j, n]], {j, 1, n - 1}];
numiter[n_] := Length@ NestWhileList[iphi, n, # > 1 &] - 1;
seq[kmax_] := Module[{v = {}, n = 1}, Do[If[numiter[k] == n, AppendTo[v, k]; n++], {k, 2, kmax}]; v]; seq[1000]
PROG
(PARI) isinfcoprime(n1, n2) = {my(g = gcd(n1, n2), p, e1, e2); if(g == 1, return(1)); p = factor(g)[, 1]; for(i=1, #p, e1 = valuation(n1, p[i]); e2 = valuation(n2, p[i]); if(bitand(e1, e2) > 0, return(0))); 1; }
iphi(n) = sum(j = 1, n-1, isinfcoprime(j, n));
numiter(n) = if(n==2, 1, numiter(iphi(n)) + 1);
lista(kmax) = {my(n = 1); for(k = 2, kmax, if(numiter(k) == n, print1(k, ", "); n++)); }
CROSSREFS
Cf. A064380.
Indices of records of A362024.
Similar sequences: A003271, A007755, A333610.
Sequence in context: A100797 A139441 A333612 * A378274 A093305 A065817
KEYWORD
nonn
AUTHOR
Amiram Eldar, Apr 05 2023
STATUS
approved