login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A093305
Number of binary necklaces of length n with no subsequence 000.
9
1, 2, 3, 4, 5, 9, 11, 19, 29, 48, 75, 132, 213, 369, 627, 1083, 1857, 3244, 5619, 9844, 17205, 30229, 53115, 93701, 165313, 292464, 517831, 918578, 1630933, 2900109, 5161443, 9197251, 16402841, 29283026, 52319379, 93558968, 167427845, 299846737, 537358107, 963651447, 1729192433
OFFSET
1,2
REFERENCES
Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 500.
LINKS
P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
P. Flajolet and M. Soria, The Cycle Construction, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.
Petros Hadjicostas, Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence, Journal of Integer Sequences, 19 (2016), #16.8.2.
Silvana Ramaj, New Results on Cyclic Compositions and Multicompositions, Master's Thesis, Georgia Southern Univ., 2021. See p. 57.
L. Zhang and P. Hadjicostas, On sequences of independent Bernoulli trials avoiding the pattern '11..1', Math. Scientist, 40 (2015), 89-96.
FORMULA
a(n) = (1/n) * Sum_{d divides n} totient(n/d)*A001644(d).
G.f.: Sum_{k>=1} phi(k)/k * log( 1/(1-B(x^k)) ) where B(x) = x*(1+x+x^2). - Joerg Arndt, Aug 06 2012
a(n) ~ d^n / n, where d = (19 + 3*sqrt(33))^(1/3)/3 + 4/(3*(19 + 3*sqrt(33))^(1/3)) + 1/3 = A058265 = 1.8392867552141611325518... - Vaclav Kotesovec, Jul 13 2019
MATHEMATICA
Table[1/n * Sum[EulerPhi[n/d] (d Sum[Sum[Binomial[j, d - 3 k + 2 j] Binomial[k, j], {j, d - 3 k, k}]/k, {k, d}]), {d, Divisors@ n}], {n, 41}] (* Michael De Vlieger, Dec 28 2016, after Vladimir Joseph Stephan Orlovsky at A001644 *)
PROG
(PARI)
N=66; x='x+O('x^N);
B(x)=x*(1+x+x^2);
A=sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k))));
Vec(A)
/* Joerg Arndt, Aug 06 2012 */
CROSSREFS
Row 3 of A322057.
Sequence in context: A333612 A362025 A378274 * A065817 A361227 A084542
KEYWORD
easy,nonn
AUTHOR
Philippe Deléham, Apr 24 2004
STATUS
approved