login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of binary necklaces of length n with no subsequence 000.
9

%I #60 Jan 25 2024 17:02:56

%S 1,2,3,4,5,9,11,19,29,48,75,132,213,369,627,1083,1857,3244,5619,9844,

%T 17205,30229,53115,93701,165313,292464,517831,918578,1630933,2900109,

%U 5161443,9197251,16402841,29283026,52319379,93558968,167427845,299846737,537358107,963651447,1729192433

%N Number of binary necklaces of length n with no subsequence 000.

%D Miklos Bona, editor, Handbook of Enumerative Combinatorics, CRC Press, 2015, page 500.

%H Michael De Vlieger, <a href="/A093305/b093305.txt">Table of n, a(n) for n = 1..500</a>

%H P. Flajolet and M. Soria, <a href="/A093305/a093305.pdf">The Cycle Construction</a>, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.

%H P. Flajolet and M. Soria, <a href="http://dx.doi.org/10.1137/0404006">The Cycle Construction</a>, SIAM J. Discr. Math., vol. 4 (1), 1991, pp. 58-60.

%H Petros Hadjicostas, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL19/Hadjicostas/hadji2.html">Cyclic Compositions of a Positive Integer with Parts Avoiding an Arithmetic Sequence</a>, Journal of Integer Sequences, 19 (2016), #16.8.2.

%H Silvana Ramaj, <a href="https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=3464&amp;context=etd">New Results on Cyclic Compositions and Multicompositions</a>, Master's Thesis, Georgia Southern Univ., 2021. See p. 57.

%H L. Zhang and P. Hadjicostas, <a href="http://www.appliedprobability.org/data/files/TMS%20articles/40_2_3.pdf">On sequences of independent Bernoulli trials avoiding the pattern '11..1'</a>, Math. Scientist, 40 (2015), 89-96.

%F a(n) = (1/n) * Sum_{d divides n} totient(n/d)*A001644(d).

%F G.f.: Sum_{k>=1} phi(k)/k * log( 1/(1-B(x^k)) ) where B(x) = x*(1+x+x^2). - _Joerg Arndt_, Aug 06 2012

%F a(n) ~ d^n / n, where d = (19 + 3*sqrt(33))^(1/3)/3 + 4/(3*(19 + 3*sqrt(33))^(1/3)) + 1/3 = A058265 = 1.8392867552141611325518... - _Vaclav Kotesovec_, Jul 13 2019

%t Table[1/n * Sum[EulerPhi[n/d] (d Sum[Sum[Binomial[j, d - 3 k + 2 j] Binomial[k, j], {j, d - 3 k, k}]/k, {k, d}]), {d, Divisors@ n}], {n, 41}] (* _Michael De Vlieger_, Dec 28 2016, after _Vladimir Joseph Stephan Orlovsky_ at A001644 *)

%o (PARI)

%o N=66; x='x+O('x^N);

%o B(x)=x*(1+x+x^2);

%o A=sum(k=1, N, eulerphi(k)/k*log(1/(1-B(x^k))));

%o Vec(A)

%o /* _Joerg Arndt_, Aug 06 2012 */

%Y Row 3 of A322057.

%Y Cf. A000358, A001644, A280218, A280303.

%K easy,nonn

%O 1,2

%A _Philippe Deléham_, Apr 24 2004