login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362020
Nonnegative numbers k not ending in 0 such that, in decimal representation, the subsequence of digits of k^2 occupying an odd position is equal to the digits of k.
0
1, 5, 6, 11, 76, 105, 501, 505, 506, 605, 756, 826, 1001, 5941, 10005, 10505, 12731, 13921, 50001, 50005, 50006, 50105, 50501, 50505, 50506, 50605, 60005, 60505, 88705, 100001, 118905, 364231, 592421, 594941, 684006, 1000005, 1000505, 1050005, 1050505, 1355941
OFFSET
1,2
COMMENTS
Subsequence of A326418. No term starts with the digit 2.
PROG
(Python)
from itertools import count, islice
def A362020_gen(startvalue=0): # generator of terms >= startvalue
return filter(lambda n:n%10 and n==int(''.join((s:=str(n**2))[len(s)&1^1::2])), count(max(startvalue, 0)))
A362020_list = list(islice(A362020_gen(), 50))
CROSSREFS
Cf. A326418.
Sequence in context: A332523 A041227 A042183 * A328544 A041939 A177714
KEYWORD
nonn,base
AUTHOR
Chai Wah Wu, Apr 04 2023
STATUS
approved