login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A114312
Number of partitions of n with at most 3 odd parts.
1
1, 1, 2, 3, 4, 6, 8, 12, 14, 22, 24, 38, 39, 63, 62, 102, 95, 159, 144, 244, 212, 366, 309, 540, 442, 784, 626, 1125, 873, 1591, 1209, 2229, 1653, 3089, 2245, 4243, 3019, 5776, 4035, 7806, 5348, 10466, 7051, 13944, 9229, 18454, 12022, 24282, 15565, 31766, 20063
OFFSET
0,3
LINKS
FORMULA
G.f.: (1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6))/Product(1-x^(2*i), i=1..infinity).
EXAMPLE
a(6) = 8 because we have 6, 51, 42, 411, 33, 321, 222 and 2211 (3111, 21111 and 111111 do not qualify).
MAPLE
G:=(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6))/Product(1-x^(2*i), i=1..100): Gser:=series(G, x, 70): seq(coeff(Gser, x, n), n=0..60);
MATHEMATICA
nmax = 50; CoefficientList[Series[(1+x/(1-x^2)+x^2/(1-x^2)/(1-x^4)+x^3/(1-x^2)/(1-x^4)/(1-x^6)) * Product[1/(1-x^(2*k)), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Mar 07 2016 *)
CROSSREFS
Sequence in context: A101902 A236912 A215966 * A095041 A331088 A336506
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Feb 05 2006
STATUS
approved